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Abstract. We report on initial evaluation findings regarding a human cognitive 

state assessment tool that was tested in various operational security operations 

centers (SOC).  
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1 Introduction 

This paper addresses a part of our iterative development of a human state assessment 

tool. First, we will introduce our motivation and context for developing such a tool. 

Second, we focus on the envisioned human state assessment flow. Third, we describe 

an instantiation of our tool in a European project named IMPETUS where it was eval-

uated in various operational settings. Results of the evaluations are presented, and we 

end this paper with some preliminary conclusions.     

2 Motivation 

An important driver for our human state assessment research relates to collaboration or 

teaming between human and system entities. A Human-Machine Team has been de-

fined [1] as “a purposeful combination of human and cyber-physical elements that col-

laboratively pursue goals that are unachievable by either individually”. In addition, Hu-

man-Machine Teaming (HMT) has been defined [1] as “the dynamic arrangement of 

humans and cyber-physical elements into a team structure that capitalizes on the re-

spective strengths of each while circumventing their respective limitations in pursuit of 

shared goals”. And even one step further, Adaptive Human-Machine Teaming as [1]  
“a context-aware re-organization/reconfiguration of human and cyber-physical ele-

ments into a fluid team structure that assures manageable cognitive load while exploit-

ing the respective strengths of human and cyber-physical elements”. Definitions like 

these have been transformed [2] to HMT challenges such as (a) to better understand 

human capabilities in the context of dynamic situations, and (b) to identify what humans 



must know about machines to interact with them, including what is required in HMT to 

establish and maintain trust, (c) how to enhance machine capabilities to enable effective 

and efficient human machine teams, and (d) to model how machines reason about hu-

man teammates. In addition [3], for an adaptive human machine teaming system archi-

tecture (labeled DUAL in Figure 1) we need to evaluate HMT architectures with metrics 
such as mission effectiveness, autonomous platform behavior efficiency, human behav-

ior efficiency, human behavior precursors, and collaborative metrics [4]. Figure 1 illus-

trates these HMT challenges by bringing together research on human and machine in-

telligence as well as the system engineering expertise in HMT studies, use cases, proof-

of-concepts, minimal viable products, and solutions. 

 

Fig. 1. DUAL architecture [taken from 3] 

Within the context of this broader stated HMT our focus is on assessing the human or 

team state as an input to align human and machine capabilities, for example, directed 

towards load balancing interventions or recommendations. The assessment of human 

and team state is also considered a necessary step in modelling how machines reason 

about their human teammates.  

3 Human State Assessment Tool 

Our research and technology roadmaps are directed on the assessment of human and 

team states. We focus on the development of a real-time assessment tool of human 

workload and team collaboration since it directly relates to human performance. Previ-

ous work suggests a tipping point between human state and - performance. In complex 

task environments, an optimal level of, for example, human workload correlates with a 

maximum level of performance. Too low or too high workload levels correlates to 

lower levels of performances [5].  

Our purpose is to measure biosignals of human operators, who are interacting with their 

equipment - and each other - while performing their specific tasks in a complex opera-

tional environment, such as a command & control room. We aim measuring biosignals 

continuously, in real-time and as unobtrusively as possible. For that, we are exploring 

wearable sensors detecting brainwaves (using Electroencephalograms, or EEG), sweat 



(using Electrodermal Activity sensors or EDA), heartbeat activity (using Photoplethys-

mogram, or PPG), eye and pupil activity (using eye trackers), local brain oxygenation 

(using Functional Near-Infrared sensors, or fNIRs) and physical activity (using soft-

ware sensors capturing user input through keyboard or mouse). Additionally, environ-

mental conditions like sound level and temperature could be recorded (using various 

sensors) in the room where the operators are at work. Assessments can be shown as 

feedback in configurable amount of detail, on individual and aggregated (team) levels, 

to person or persons of choosing, in the form of a (digital) dashboard. This feedback 

can also be used in the context of an HMT application to close the loop and adapt their 

interfaces or information they provide to the operators being assessed to balance cog-

nitive load and driving mission effectiveness. 

The end goal of the assessment tool is to provide timely feedback and assure the oper-

ators can perform their tasks without being overloaded or overstressed which might 

impede their work and introduce unwanted reduced effectiveness of the operators. 

 

 

Fig. 2. Schematic representation of the assessment flow: team members are sensed, 

neuro-physiological measurements are analyzed, workload and team collaboration is 

assessed, and feedback is available for interventions such as load balancing.  

4 Evaluating the assessment tool in an operational environment 

We developed an instantiation of our assessment tool box based on the requirements 

derived from the IMPETUS project [6] The goal of IMPETUS is to provide city au-
thorities with new means to address security issues in public spaces. Using data gath-

ered from multiple sources, the project aims to facilitate detection of threats and help 

human operators dealing with threats to make better informed decisions. IMPETUS 

will detect potential threats by using AI techniques to search social media and the 

deep/dark web for unusual and suspicious activities, and to analyze available smart city 

data. Threats will be classified and assessed to determine an appropriate response using 

an approach which employs the power of AI to support human judgement. The project 

builds on tested technologies but enhance and combine them in a coherent and user-



centered solution that goes beyond state-of-the-art in key areas such as detection, sim-

ulation & analysis, and intervention. For this project we developed a workload assess-

ment tool for the operators of a Security Operations Center SOC. Part of the research 

in the IMPETUS project is to evaluate all tools in an operational environment provided 

by two partner cities Oslo (Norway) and Padova (Italy).   
 

We tested our workload assessment tool (see Figure 3) in various SOCs in the cities of 

Oslo and Padova. We assessed the workload of SOC operators interacting in a series of 

simulated events. The SOC operators were wearing a Brain Computer Interface BCI 

that captured both PhotoPlethysmoGram (PPG) and ElectroEncephaloGram (EEG) sig-

nals. PPG signals were captured by a light sensor placed on the skin. The sensor records 

local pulse that is generated by capillary blood flow. EEG signals were captured by 

electrodes located on the scalp which record electrical activity of the brain. From these 

signals we selected features such as heart beats per minute, interbeat-interval (heart rate 

variability) and EEG spectral band power of the selected frequency bands (Theta, Al-

pha, Beta). The features were fed into a personalized workload assessment module con-

sisting of a mental workload model, a stress workload model, and a physical workload 
model. These models were created based on a labelled dataset that we acquired earlier 

using a simulation environment that represented various calibration tasks that resemble 

the cognitive load that human operators may experience in a SOC. Data management, 

privacy, and ethical concerns were part of the tool design process.  

 

 
 

Fig. 3. Workload assessment tool 

 

Evaluation tests were performed in November 2021 in the security operation center in 
Oslo town hall. We extensively worked with one of the operators of that SOC to eval-

uate our assessment system on usability of the sensors, data collection for model build-

ing, user interface ease of use, and interpretability of the classification of workload. In 

December 2021 we tested the assessment tool in the Cyber SOC as well as in the Mu-

nicipality CCTV SOC in the City of Padova. In particular, the latter environment cre-

ated a setting where multiple operators were present at the same time working apart 

together on monitoring the CCTVs and take actions where appropriate. In this case the 

assessment tool went in hyper-scanning mode and measured and assessed the workload 

of two operators simultaneously. 



Method 

Before the evaluation a questionnaire was sent out to the cities and their operators to 

better configure the workload assessment tool according to the acceptance criteria of 

the operators: these were questions related to their comfort, feelings, and attitudes in 

using different sensors and providing personal psychological data. Based on the results 

we decided to use the Muse S brain computer interface that has two sensors: an EEG 

sensor and a PPG sensor.    

In the City of Oslo, calibration tests to train personalized workload models were done 

3 weeks prior to the actual validation test in Oslo: one operator participated in the (cal-
ibration) test. The calibration test took approximately 4 hours. Using these data, various 

workload models (physical, emotional, and mental) were trained for this specific oper-

ator. During the evaluation the same operator was using another IMPETUS tool during 

several roleplays just outside city hall. In parallel the workload assessment tool captured 

the operators’ neurophysiological data using a brain computer interface, which was pro-

cessed in real-time resulting in a workload classification (low, mid, high) for each work-

load dimension (physical, emotional, mental) and if deviations in these classifications 

compared to previous classifications occurred over time, then alerts were generated and 

visualized in the dashboard.   

At the Cyber SOC in Padova one operator participated in the test. One day prior to the 

evaluation the operator performed the calibration task for training the operators’ work-
load model. During the test the operator was working on a laptop (not performing any 

cyber risk assessments in particular). The operator was interviewed on the usability of 

the workload assessment tool dashboard that visualized her assessed workload in real-

time while being interviewed. In addition, the Cyber SOC supervisor joined the evalu-

ation discussion on the usability and added value of the workload assessment tool. At 

the CCTV SOC: two operators participated in the test. One day prior to the evaluation 

they performed the calibration task. Their personalized workload models were trained 

off-line and implemented in the workload assessment tool. Both operators were per-

forming their normal daily activities as well as remotely viewing some of the IMPETUS 

tools during the test. The test included an explanation of the workload assessment tool 

dashboard. Both operators and their supervisor were included in the debriefing/inter-

view afterwards.  During the test, deviations in workload levels were detected and ap-
propriate alerts were generated. These alerts were presented on the dashboard that was 

accessible by the supervisor of the SOC. The assessment tool enabled the supervisor to 

take actions when a team member was mentally and physically under or overloaded 

and/or stressed.  

Results 

Interviews and feedback from the SOC operators and supervisors illustrated that:  

• Usability Sensor Set: the brain computer interface was considered comfortable 

and unobtrusive.  

• Data collection and model training: took in total about 2-3 on average per per-

son, which was less than expected and can be done on the same day as running 

the evaluation tests.   



• The dashboard of the workload assessment tool is considered easy to use by 

supervisor and operator.   

• Workload classification: personalized workload models made sense given the 

current task and situation at hand.    

• Workload assessment tool clearly showed operational value.   

5 Conclusion 

We sketched out the rationale for developing a real-time human state assessment tool 

in the context of human machine teaming. We evaluated an instantiation/configuration 

of a workload assessment tool in the IMPETUS project. We presented the findings of 

the evaluation, which showed the added values at the one hand side but also pointed to 

current limitations: new operational procedures are needed that should focus on miti-

gation strategies in situations where operators are suffering from workload issues af-
fecting their level of performance during crisis management situations.      
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