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INTRODUCTION 

Among all international flight fatal accidents between 2011 and 2020, 54% happened during 

the final approach, or in the landing phase (Boeing, 2021). Moreover, Reynal et al. (2017) found 

that half of the pilots persisted in an erroneous landing decision rather than performing a go-

around to retry the approach. Accident analyses show that go-around procedures are often 

improperly performed due to their complexity, high time stress, and scarcity, which complicate 

training (Dehais et al., 2017). Besides, a study revealed that only about 3% of unstable 

approaches result in a go-around (Shah & Campbell, 2018). In light of this evidence, better 

support of pilots' decision-making during landing approaches is warranted. In previous decades, 

pilots were used to manually control the aircraft compared to today which is now more about 

global mission management and automation. According to Myers and Starr (2021), existing 

automation solutions can perform some tasks better than humans (e.g., monitoring a tremendous 

amount of parameters simultaneously) but lack one thing that humans have: judgment. Recent 

trends focus on the design of more ecological human-machine interfaces to support decision-

making for pilots and enhance safety level. One strategy for developing decision aids that are 

tailored to user judgments is called policy capturing (e.g., Cooksey, 1996). This technique relies 

on statistical or machine learning to infer a decision model based on previous decisions (e.g., a 

medical diagnosis) as well as on an ensemble of features used to explain the decision (e.g., a 

list of symptoms; see Backlund et al., 2009). Unstable approaches and the decision to either 

land or go-around seems an ideal use case for investigating policy capturing, particularly 

because context-based human expert judgments remain critical and have not readily been 

converted into tractable procedural rules. Indeed, policy capturing is intended as a method for 

deriving cognitive aids for individuals having to make decisions in real-life situations 

(Goldberg, 1970). 

 

The Cognitive Shadow is an online modeling and decision tool developed by Thales Research 

and Technology Canada that automatically learns a user’s decision pattern and provides 

recommendations based on past decisions with similar attributes. Expert’s decisions are 

collected and sampled to train linear and nonlinear machine learning models concurrently 

(namely logistic regression, decision trees, k-nearest neighbors [KNN], neural networks, naïve 

Bayes, support vector classifiers and random forest) to provide a prediction originating from a 

specific model or an aggregate of the models. Marois et al. (under review) demonstrated that 

the judgement policies of three pilots facing an unstable approach on static and low-fidelity 

settings could be predicted with an accuracy of approximately 88% (and with an accuracy of 

100% with all experts combined). This suggests that the model was perfectly representative of 

the decision-making patterns of the experts when combined using a majority rule.  

 

The study reported herein aimed at extending Marois et al.’s (under review) work by further 

evaluating the land/go-around group modeling capacity of the Cognitive Shadow. Group 

modeling may lead to more or less accurate predictive modeling when involving different 

individual patterns (Lafond et al., 2009; Lee & Webb, 2005). Indeed, the effectiveness at 



capturing a common decisional pattern may vary according to pilots’ judgment 

homogeneity/heterogeneity. Such group-based approach thus needs to be further evaluated. The 

second objective involves improving ecological validity of the data collection settings 

compared with the capture interface of the previous study (i.e., reading a list of contextual 

factors instead of looking at cockpit quadrants). In fact, Marois et al.’s approach might have 

impacted the pilots’ habits to screen the situation and reduce mental resources availability to 

take appropriate decision. For that reason, in the current study, a Primary Flight Display (PFD) 

instrument was added to the interface in order to improve the ecological validity of the 

experiment.  

 

METHOD 

Participants 

Four aircraft pilots took part in the study. They had an average of 18.8 years of experience in 

piloting including on a typical single aisle aircraft.  

 

Material & Procedure 

Model parameters used for the experiment comprised 21 features: Headwind speed (Knots), 

Lateral wind speed (Knots), Runway headwind speed (Knots), Runway lateral wind speed 

(Knots), Distance with nearest aircraft (Nautical miles), Lateral deviation (Dot tenths), Δ 

Lateral deviation (Dot tenths), Vertical deviation (Dot tenths), Δ Vertical deviation (Dot tenths), 

Engine power N1 (%), Δ Engine power N1 (%), Pitch (degrees), Δ Pitch (degrees), Roll 

(degrees), Δ Roll (degrees), Vertical speed (feet per minute), Aircraft speed (IAS; Knots), Δ 

IAS (Knots), Theoretical approach speed (Vapp; Knots), IAS – Vapp difference (Knots), 

Precipitation on aircraft ratio (ratio [0,1]). The ranges of features were refined to consider expert 

inputs in order to optimize the representativeness of the cases presented to the pilots. The delta 

(Δ) features aimed at helping pilots to take their decision while accounting for the recent trend 

(change in the last five seconds). The pilots were shown a custom web interface illustrating the 

main features through the Primary Flight Display (PFD) instrument on the left and the others 

on the right (see Figure 1). The dashboard displayed a series of different approach situations 

whose attributes were generated by the Cognitive Shadow.  

 

 

 
Figure 1: Cognitive Shadow web interface illustrating some features  

through PFD instruments and other features on a side-list. 



Participants were asked to decide whether they would land or go-around according to a series 

of features representative of different unstable approach situations using one of the three buttons 

(Figure 1) for the classification (i.e., Go-around, Landing, Skip). The Skip option allowed pilots 

to discard any cases deemed unrealistic. The experiment comprised two sessions. The first 

session was a knowledge capture phase aiming at collecting the participants’ decisions to 

automatically train the decision-making models. Each pilot was shown 50 different cases from 

a predefined dataset designed with realistic value ranges. The second session represented the 

test phase using the majority response as the ground-truth (i.e., the correct decision). Each pilot 

was shown the same 30 cases and the Cognitive Shadow provided recommendations and 

decision explanations when their decision differed from the group model predictions. The group 

model was trained from the 200 (50 decisions × 4 pilots) decisions of the first session. While 

50 decisions per expert seems low, the group modeling strategy allowed to sum decisions from 

all the pilots and thus increased the number of training data. It also helped to demonstrate the 

frugal learning capacities of the Cognitive Shadow to learn from small amounts of data.  

 

RESULTS 

The aggregation method selected to discriminate the output of the multiple algorithms is called 

Best Model. This method defines the recommendation according to the model’s accuracy that 

was better at predicting the classes (i.e., Go-around, Landing) using a standard 10-fold cross-

validation procedure. The best model identified was a KNN with an accuracy of 91.19%. Then, 

the group-of-experts model created from all the participants’ decisions in the first session was 

evaluated with the second session’s ground-truth responses (i.e., majority response). If no 

majority could be defined between pilots’ decisions (e.g., two go-around vs. two land), the 

prediction of the Cognitive Shadow was chosen to break the tie (this occurred only once). The 

ground-truth on the test set (N = 30) established 27 landing decisions and 3 go-around decisions. 

Table 1 displays the confusion matrix of the decisions on the test phase for the four pilots and 

for the group-of-experts model as well as the accuracy, sensitivity, and specificity measures 

(while considering landing as the “positive” action and go-around as the “negative” action). On 

the test phase, Pilot 1 reached perfect accuracy (100%), Pilots 2 and 3 both reached a 90-% 

accuracy, and Pilot 4 reached an accuracy of 86.21%. The group-of-experts model correctly 

predicted 96.67% of the decisions on the test phase according to the ground-truth established 

by the majority decision. One pilot skipped a case considering having unrealistic values; 

consequently, the test phase comprised 119 rather than 120 (30 × 4 pilots) decisions. 

 

 Pilot(s) 

decision 

Ground-truth decision Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) Landing G-A Total 

Pilot 1 
Landing 27 0 27 

100.00 100.00 100.00 
Go-around 0 3 3 

Pilot 2 
Landing 25 1 26 

90.00 92.59 66.67 
Go-around 2 2 4 

Pilot 3 
Landing 24 0 24 

90.00 88.89 100.00 
Go-around 3 3 6 

Pilot 4 
Landing 23 0 23 

86.21 85.19 100.00 
Go-around 4 2 6 

Group 

predictions 

Landing 27 1 28 
96.67 100.00 66.67 

Go-around 0 2 2 

 

Table 1: Confusion matrix and measures of accuracy (%) for the four pilots and for the group-

of-experts in the test phase. Ground truth represents the majority decision. 



Interrater agreement for the test phase led to a Fleiss’ kappa of κ = .42 (p < .001, 95% CI [0.27, 

0.56]), representative of a moderate agreement between the four raters (cf. Landis & Koch, 

1977). The unique performance of each pilot on the ground-truth (i.e., before the Cognitive 

Shadow provided retroaction when the system considered a mismatch between the pilot 

decision and the group-of-experts model prediction) was also evaluated and compared with the 

joint cognitive system (decision following feedback from Cognitive Shadow). Performance 

according to the ground truth revealed a mean increase of 3.1% (SD = 2.1) when pilots 

considered the decision-aid recommendation (i.e., joint cognitive system) compared to the 

human-only system, and this increase was systematically positive. Because the joint cognitive 

system was anticipated to be better than the human-only system, a Wilcoxon signed-rank test 

was carried out with a unilateral critical alpha of 0.05, supporting that the joint cognitive system 

produced a significant increase in performance accuracy on the ground-truth, Medhuman = 

86.67%, Medjoint = 90.00%, Z = 2.04, p = .0415. Finally, the “land” class was better predicted 

(~86%) compared to the go-around class (~77.5%). This can be explained by the large amount 

of land cases on which the Cognitive Shadow could be trained. 

 

DISCUSSION 

The approach and landing phases represent a major proportion of all commercial aircraft 

accidents (IATA, 2016). One way to support humans in high-risk environments such as aviation 

is through decision-support systems (Sarter & Schroeder, 2001). Nevertheless, predicting pilot 

decision-making is difficult because they have their own perceptions of risk during the approach 

phase which impact their go-around decision (Shah & Campbell, 2018). Herein, the Cognitive 

Shadow decision-aid tool created a group-of-experts model with the decisions of the four pilots 

that was able to predict 96.67% of the classifications on the test phase. This experiment, 

consistent with Marois et al. (under review), suggests that this model was judiciously 

representative of the experts' decision-making patterns. These results imply the potential of 

creating useful decision aids by extracting pilots’ knowledge using policy capturing. Individual-

level modeling was not performed herein since it would have required a lengthier data 

collection. Yet, group-level modeling provided the advantage of reassuring pilots who 

appreciated the idea that the expert’s community endorsed or challenged their decisions through 

the group’s model predictions. Moreover, the increase of performance, due to pilots considering 

the recommendation of the Cognitive Shadow, demonstrates the potential benefit of the joint 

cognitive system approach (as a distinct strategy from automation).  

 

On another note, in order to balance land and go-around cases, a general rule derived from 

interviews with the expert pilots was used. It however seems that the application of the rule 

changed when pilots were being shown the cases. This experiment indeed revealed 90% of the 

cases were classified “land” which corroborates the propensity of pilots to land instead of go-

around. Notably, the Airbus research program aims at preventing flight crews from the 

perseveration syndrome which characterizes the gathering of pilots’ mental efforts toward a 

unique objective even if it is unsafe (Dehais et al., 2010). Future work will make use of the 

models generated in this study to build datasets balanced between lands/go-arounds and avoid 

any bias toward landing. The decision-aid recommendations in case of flawed reading of events 

by the pilot could represent cognitive countermeasures to enhance pilots’ attention shifting 

capabilities. Highlighting critical situation variables would thus be of importance as a 

complement to alerts and decision recommendations. Thus, the human propensity of 

perseveration and landing at all costs (Causse et al., 2013; Curtis & Smith, 2013) could likely 

be mitigated by such new technologies. Nonetheless, more extensive human factors studies, 

including in more dynamic settings, are required to investigate longer term impacts of 

interaction with such decision aids. Indeed, a stronger relationship between human decision 



makers and automated decision aids could be built with additional insights into introducing 

artificial cognitive agents into a decision-making context (Mosier & Skitka, 1996).  
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