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Abstract
Vibration analysis is a prevalent technique in the predictive maintenance of wind turbines. It is an effective
method for early fault detection and enables the creation of cost-effective maintenance strategies. Commonly
used vibration analysis methods in the literature rely on signal processing techniques such as time and frequency
domain approaches. However, the signal processing techniques require manual interpretation by domain ex-
perts. It is important to note that different indicators exhibit sensitivity to specific faults. Manual analysis of
indicators can be avoided by fusing them to derive high-level wind turbine health status. It enables the learning
of complex non-linear relationships among the indicators. This research focuses on a multivariate deep learning
model, i.e., autoencoder, which fuses different signal processing indicators to provide a single high-level health
status. The proposed model is a normal behaviour model that learns the indicator’s normal behaviour and labels
faults if it observes deviation from the normal behaviour. The proposed fusion method of indicators is robust
compared to individual indicator models as it learns complex non-linear relationships among indicators. The
proposed method is tested for fleet-level fault detection both with and without fine-tuning for a specific wind
turbine. Furthermore, it decreases the time required for wind farm health prognosis analysis and computation.
Various autoencoder architectures have been compared, including simple feedforward neural networks, convo-
lutional neural networks, and recurrent neural networks. The proposed method is demonstrated using real-life,
high-frequency condition monitoring data from offshore wind turbines over several years, including wind tur-
bines observed faults. The method’s effectiveness and performance were demonstrated through analysis of
planetary stage, generator, and high-speed stage failure cases.

1 Introduction

The increasing interest in wind energy comes with the challenge of significant operating and mainte-
nance (O&M) costs, which contribute approximately 30% of the overall energy costs. To address this challenge,
understanding wind turbines’ health status becomes crucial. Early fault detection helps to devise efficient con-
trol and maintenance strategies for the entire wind farm. Condition monitoring (CM) techniques enable the
development of predictive maintenance strategies to plan cluster maintenance. Group maintenance in a wind
farm reduces the O&M cost significantly. Furthermore, the anticipation of wind turbine health status avoids
catastrophic failure, which increases overall wind farm production by reducing downtime [1].

Vibration analysis has emerged as the primary technique in condition monitoring (CM) [1, 2]. Various
signal processing features are derived from raw vibration signals. Analyzing these features enables experts
to detect evolving faults at an early stage. Reliable fault detection techniques require comprehensive feature
analysis, as different features exhibit sensitivity to various types of faults. Time and frequency domain methods
are commonly used signal processing techniques in condition monitoring. Time domain features involve statis-
tical parameters such as root mean square, kurtosis, peak-to-peak, Moors kurtosis, peak energy index, and crest
factor [3, 4]. On the other hand, frequency domain features rely on cyclostationarity methods [5], specifically
envelope analysis [6] and spectral correlation [7].

Manually analyzing a vast number of features becomes an impractical task for experts, mainly when deal-
ing with multiple machines across the fleet having many components. Moreover, non-stationary operating
conditions within complex machines, such as wind turbines, further complicate the CM task. An artificial
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intelligence-based CM method capable of providing a comprehensive high-level health status overview has the
potential to significantly streamline the task of analyzing the health of the entire wind farm.

The research community has considerable interest in the integration of deep learning methods for fault
detection. However, a key challenge lies in the limited availability of fault data. Transfer learning presents
a viable solution by enabling the training of machine models using data from similar machines [8]. Normal
behaviour models (NBMs) hold substantial promise for fault detection applications, as they solely require
healthy data for training, which is readily accessible. The NBM learns the normal behaviour of machines from
healthy data and identifies potential faults when deviations are detected [9, 10]. Vibration signal processing
features [9], along with derived coherence maps [11], enable the detection of faults in the rotary components of
wind turbines. On the other hand, temperature signal-based NBMs are trained to identify faults in wind turbine
generators [12, 13].

This research introduces an approach utilizing a physics-informed multivariate deep learning NBM that
combines time and frequency domain vibration signal processing features. The proposed method provides
a high-level health status assessment, eliminating the need for analyzing individual features. The proposed
method is validated on wind farm data collected over multiple years and detects faults that have been confirmed
through manual inspection by engineers.

2 Multivariate deep learning

The proposed method integrates time and frequency domain signal processing indicators with machine
learning models to effectively identify mechanical failures. These indicators are computed from raw vibration
signals and then utilized as inputs for multivariate deep learning models, such as deep autoencoders. The
method establishes a normal behaviour model by learning the machine’s healthy behaviour. The model can
effectively predict and detect faults by observing any deviations from this learned healthy behaviour.

Encoder Latent 
Space Decoder

Figure 1: A schematic diagram deep autoencoder has three parts encoder, latent space, and decoder. The input
X is passed at the input layer, and the autoencoder tries to reconstruct the output X̂ resemblant as the input by
minimising the RE

The autoencoder is a type of deep neural network that aims to reduce the dimensionality of input data by
compressing it into a lower-dimensional representation and then reconstructing it to resemble the original input
data. The common architecture of an autoencoder, depicted in Figure 1, consists of three main components: an
encoder, a latent space, and a decoder. The encoder component gradually encodes the input data, transforming
it into a representation in the latent space. This latent space serves as a condensed and lower-dimensional
representation of the input data. The decoder component then takes this encoded data from the latent space
and reconstructs it back to its original form, resembling the initial input data. Throughout this process, the
autoencoder aims to minimize the reconstruction error (RE) between the actual input and the decoded output.

A preprocessing step is performed to eliminate interference removing from other components and envi-
ronmental factors. This step involves separating the raw signal into deterministic and stochastic parts. Time
domain and frequency domain indicators are computed on preprocessed signals. Time domain indicators are
statistical indicators, while frequency domain indicators are primarily the characteristic frequencies observed
in spectral and envelope domains. These indicators provide valuable insights into the underlying patterns and
properties of the vibration signals, facilitating further analysis and interpretation.
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The task of fault detection in wind turbines is particularly challenging due to the continuously changing
operating conditions. The normal behaviour of wind turbines is constantly changing, therefore a robust fault
detection method should be capable of adapting to these changing operating conditions. To address this chal-
lenge, the proposed method incorporates active power and rotation speed measurements, which introduce the
operating condition information to the model. By integrating this relevant data into the multivariate autoencoder
model, the method enhances its ability to accurately detect faults in wind turbines.

The proposed method consists of three essential steps:

• Normal behaviour physics-informed multivariate autoencoder (PIMA) training using healthy data.

• Computation of thresholds using healthy data.

• High-level health status prediction on new data.

Figure 2: A schematic diagram of the multivariate convolutional neural network autoencoder architecture. The
input layer takes signal processing indicators and operating conditions (OC) X as input. The encoder encodes
the input to a latent space, and the decoder reconstructs the input X̂ from the latent space.

2.1 Normal behaviour PIMA training

The proposed method utilizes a multivariate deep autoencoder, it requires the normalisation of indicators to
ensure they are scaled into the same range. To achieve this, a Minmax scaler is used to normalise the indicators
within the same range. By applying the Minmax scaler, all indicator values are scaled between 0 and 1, as
demonstrated in Equation 1 and Equation 2.

Xstd =
x−min(x)

max(x)−min(x)
(1)

Xnorm = Xstd ∗ (Max−Min)+Min (2)

Where Min, Max is the normalisation range.
The normal behaviour multivariate deep autoencoder is trained on operating conditions and indicators com-

puted during the healthy period of the wind turbine. The duration of this healthy period is determined by

3



engineers by observing the wind turbine’s condition monitoring indicators. The healthy training dataset D is a
time series that encompasses M observations, denoted as ti with i = 1, ...,M.

D = {ti|i = 1, ....,M} (3)

Each timestamp ti within the time series contains the recorded operating conditions and the corresponding
computed indicators.

Xi = {x1,x2,x3, ......xn,oc} (4)

The normal behaviour multivariate deep autoencoder architecture is depicted in Figure 2. The specific con-
figuration of the network architecture depends on the number of indicators and operating conditions involved.
For this purpose, a one-dimensional convolutional network is employed, which comprises an encoder, a latent
space, and a decoder. The encoder, denoted as function g, transforms the input Xi into a lower-dimensional
latent representation Zi. This transformation is achieved through the following equation 5:

Zi = g(Xi) (5)

The decoder f then reconstructs the original input X̂ from the latent representation Zi using the following
equation 6:

X̂i = f (Zi) (6)

Where the X̂i is decoded representation of the original input Xi:

X̂i = {x̂1, x̂2, x̂3, ......x̂n, ôc} (7)

The mean squared error (MSE) is used as a metric for RE between the original input Xi and the decoded output
X̂i. During the training process, the autoencoder learns to minimize MSE, aiming to reduce the discrepancy
between the original input and the reconstructed output.

RE = MSE =
1
N

N

∑
i=1

(Xi − X̂i)
2 (8)

Where N represents the number of indicators and operating conditions in the input. Xi represents the original
input, while X̂i denotes the reconstructed output. The MSE is the difference between the original input and the
reconstructed output. A lower value of the RE indicates a more precise reconstruction, demonstrating that the
autoencoder has effectively minimized the discrepancy between the original input and the reconstructed output.
To prevent overfitting, a regularisation term is incorporated into the MSE loss function.

MSE =
1
N

N

∑
i=1

(Xi − X̂i)
2 +λL2(W ) (9)

Where W is neural network parameters, L2 is the regularisation term, and λ is the regularisation parameter that
controls the effect of the regularisation term. L2 regularisation is a sum of squares of the neural network weight
parameters, which adds a term MSE loss function that penalises the sum of squares of the weight parameters in
the neural network.

2.2 Threshold computation

The threshold is computed using the same healthy dataset D, which consists of M observations and is used
to train the normal behaviour PIMA. This threshold represents a specific deviation from the normal behaviour
of wind turbines. Different threshold levels can be computed based on the requirements of the application.
To validate the proposed method, two threshold levels are considered: two and three standard deviations away
from the mean reconstruction error (RE) calculated on the healthy dataset D. These threshold levels serve
to categorize faults into different states, such as normal, warning, and alarm states. The mean and standard
deviation of the healthy dataset D are computed as depicted in Equation 10 and Equation 11, respectively.

µ =
1
M

M

∑
i=1

REi (10)
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σ =

√
1
M

M

∑
i=1

(REi −µ) (11)

Two levels of thresholds are calculated using the computed mean and standard deviation. The warning threshold
is determined as two standard deviations away from the mean RE as in Equation 12,

T hreshold1 = µ +2∗σ (12)

while the alarm threshold is set at three standard deviations away from the RE mean as shown in Equation 13.

T hreshold2 = µ +3∗σ (13)

2.3 High-level health status prediction

The normal behaviour PIMA is trained to reconstruct the typical functioning of wind turbines with a focus
on minimizing the RE. When the RE of the model exceeds the predefined threshold, it signifies anomalous
behaviour, indicating the potential presence of a fault. The new data point is assigned a label of normal,
warning, or alarm based on the two thresholds. If the RE falls below the threshold level T hreshold1, it is
labelled as normal. If the RE is between T hreshold1 and T hreshold2, it is assigned the warning label. Lastly, if
the RE exceeds T hreshold2, it is categorized as an alarm. The threshold-based approach enables the detection
of deviations from normal behaviour and facilitates the identification of potential faults in wind turbines. To
mitigate false alarms during the healthy state of the wind turbine, a sliding window technique is employed. This
technique involves counting the number of alarms within a window and labelling a data point as healthy if the
number of alarms falls below a certain threshold, even if the RE exceeds T hreshold1 or T hreshold2.

3 Experiments

(a) Time domain statistical indicators (b) Time and frequency domain indicators

Figure 3: The plots represent the fault trend of the planetary stage channel over multiple years. The x-axis
denotes the multi-year time index, while the y-axis represents the RE. Each data point is colour-coded based on
the corresponding alarm level. Green indicates healthy behaviour, yellow signifies a warning, and red represents
an alarm state.

The proposed method is validated using a dataset obtained from an offshore wind farm consisting of more
than 50 wind turbines. The data is collected for ten seconds every two or three days over the span of multiple
years. Multiple channels are installed on the wind turbine drive train to capture the individual components’
behaviour. A separate model is trained on each channel to provide a comprehensive overview of the high-level
health status based on multiple signal-processing computed indicators. The normal behaviour PIMA is trained
using approximately one year of healthy data. This trained model is then utilized to predict the high-level
health status over multiple years, enabling the detection of faults at various stages. To ensure the accuracy
and reliability of the detected faults, engineers conduct manual borescope inspections of the components to
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confirm the presence of the faults. This validation process involves expert evaluation and provides additional
verification of the detected faults identified by the proposed method.

Figure 4: The fault trend of the generator channel is depicted over multiple years. The x-axis represents the
multi-year time index, while the y-axis corresponds to the RE. The colours green, yellow, and red respectively
indicate the healthy, warning, and alarm states.

To further emphasize the significance of utilizing multiple indicators, the following results are presented,
demonstrating instances where faults are not detected solely based on time-domain statistical indicators. How-
ever, by incorporating frequency domain indicators in conjunction with statistical indicators, the proposed
method successfully detected the faults. By leveraging a diverse range of indicators, the proposed method en-
hances its ability to capture various fault patterns and improve the overall accuracy of fault detection because
different types of indicators exhibit sensitivity towards distinct types of faults. The results of the proposed
method are demonstrated in Figure 3, Figure 4, and Figure 5. These figures illustrate the high-level health
status labels determined by the predicted RE of the normal behaviour PIMA. The assigned colours correspond
to different levels of alarms determine by threshold levels defined in Equation 12 and Equation 13. During the
healthy state of the wind turbine, the model predicted RE is below T hreshold1, which is labelled as green and
represents normal behaviour. In the presence of faults, the RE gradually deviates from the normal behaviour
and exceeds T hreshold1, indicating a warning state and labelled yellow. As the fault severity increases, the
RE surpasses the second threshold, indicating an alarm and labelled red. The proposed method demonstrates
its capability to detect faults at early stages, as the RE increases with an increase in fault severity. These de-
tected faults are further confirmed through the observation of cracks on the alarmed components during manual
borescope inspection.

Figure 3 showcases the fault in the planetary stage channel. Figure 3a utilizes time domain statistical
indicators, while Figure 3b combines both statistical and frequency domain indicators to compute the high-
level health status. The statistical indicators alone are not sufficient as input to the normal behaviour PIMA for
detecting specific faults in the planetary stage channel. However, by combining them with frequency domain
indicators, the method becomes capable of detecting different types of faults. The generator channel fault case
depicted in Figure 4 demonstrates a gradual increase in alarms over time. The fault trend consistently exceeds
both T hreshold1 and T hreshold2, indicating a warning and alarm state, respectively. The fault detected by the
proposed method was further confirmed through manual borescope inspection. Figure 5 illustrates a healthy
case in the high-speed stage channel where statistical and frequency domain indicators are utilized as input to
the proposed model. The plot demonstrates a consistent trend in the data, with the RE consistently staying
below T hreshold1, which indicates the high-speed shaft healthy behaviour.

6



Figure 5: The plot illustrates the healthy trend of the high-speed stage channel over multiple years. The x-axis
represents the multi-year time index, while the y-axis corresponds to the RE. The RE is less than T hreshold1
indicating the healthy behaviour of the high-speed shaft.

4 Conclusion

The proposed normal behaviour physics-informed deep learning method demonstrated its effectiveness
in detecting faults in wind turbine drivetrain components. By leveraging multiple indicators, including time
domain statistical and frequency indicators, the method provided a comprehensive high-level health status
overview of wind turbine drivetrain components. Validation of the method on a planetary stage channel fault
highlighted the limitations of using solely statistical indicators as model input, while the integration of fre-
quency domain indicators successfully detected the fault. Through the utilization of multiple indicators, the
proposed method offers valuable insights and a comprehensive health status overview for wind farm operators.

Acknowledgments

The authors would like to acknowledge FWO (Fonds Wetenschappelijk Onderzoek) for their support through
the SB grants of Faras Jamil (#1S63123N), post-doctoral grant of Cédric Peeters (#1282221N), and SBO project
Robustify (S006119N). Furthermore, this research was supported by funding from the Flemish Government
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