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Abstract
One of the most common representations of acquired vibration signals from a faulty machine is the time-
frequency representation in the form of a spectrogram matrix. Because the magnitude part of the spectrogram
matrix consists only of non-negative elements, it can be decomposed using non-negative matrix factorization
(NMF) into a base matrix and weight matrix, which represent the frequency and time content of the signal,
respectively. The frequency features of the base matrix can be used as filters to detect local damage in bearings
by filtering the original signal with these filters. However, classical NMF provides filters that cover all fre-
quency bands with different amplitudes. Unfortunately, such filters cover both informative and non-informative
frequency bands, the second ones correspond to the noise. To solve this problem, the NMF can be enhanced
by using orthogonal non-negative matrix factorization (ONMF), which imposes orthogonality constraints onto
the NMF model. The orthogonality constrained applied to NMF improves the quality of clustering properties
of NMF, which corresponds to better detecting of informative frequency bands. Additionally, the orthogonality
constraints make the decomposition more sparse, which translates into zero amplitude at the non-informative
frequency band related to the noise. Hence, using ONMF we can obtain a more selective filter which filters
out only the most relevant information from the signal. The ONMF works for both signals with Gaussian and
non-Gaussian noises. The analyzed signals come from a test rig with faulty bearings (Gaussian noise) and belt
conveyor (non-Gaussian noise).

1 Introduction

Machine defect detection typically employs non-stationary signal processing with time-frequency repre-
sentations (TFRs). The spectrogram is one of the most fundamental, well-known, and understandable repre-
sentations of signals. A spectrogram can be used to quickly identify important and non-informative frequency
bands in a specific context (fault detection in this case). However, non-negative matrix factorization (NMF) has
already been employed in condition monitoring when the spectrogram is regarded as a non-negative matrix. It
enables us to locate a reliable source of information, to obtain a suitable time profile, or to locate spectral content
within a certain frequency range. By multiplying the frequency profile by the observed signal in the frequency
domain, the signal of interest (SOI) can be easily extracted by using it as a filter characteristic. A selective
filter characteristic, or the pass-band for the SOI-related frequencies and the stop-band for other frequencies,
is necessary for such a method. The SOI should be impulsive, cyclic, and have a higher signal-to-noise ratio
(SNR) than the raw signal after filtering.

The primary goal of this work is to show an effective method for bearing fault detection in a vibra-
tion/acoustic signal. Pre-filtering the original, unprocessed signal will improve the SNR and help reach the
target. Practically, there are some frequency bands where diagnostic data (i.e., an instructive component of the
raw signal) are found, but their precise location is unknown. By creating an optimal frequency band (OFB)
selector with the orthogonal version of NMF (ONMF), where orthogonality constraints are enforced on the
frequency profiles, we present a fault detection method to address the filtration problem. The ONMF version
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proposed by Asteris [1] served as the inspiration for the stochastic sampled ONMF algorithm (SS-ONMF) [2]
that we applied in this work, which is more stable for initialization by changing the selection rule of subspace
exploration.

2 Proposed methodology

Observed signal y(t) is assumed to be a superposition of three components: s(t) is periodic impulsive signal
of interest (SOI), d(t) is disturbing non-Gaussian (impulsive) signal, and n(t) is disturbing zero-mean Gaussian
noise (mostly colored noise) . Thus:

y(t) = s(t)+d(t)+n(t). (1)

Let Y ∈ RI×T
+ be a discretized version of spectrogram of the input signal y(t). Assuming the orthogonality

conditions for any pair of frequency profiles, i.e., wT
s wd = 0, wT

s wn = 0, and wT
d wn = 0, spectrogram Y of model

(1) can be rewritten by the ONMF model:

Y = WHT , where W TW = IR,W = [ws,wd ,wn] ∈ RI×R
+ , H ∈ RT×R

+ , (2)

where IR ∈ RR×R is an identity matrix, and R = 3 for the discussed case.

3 Experiments

The mixed signal of sources (the SOI plus noisy components) is used as experimental input. This signal
is converted into a spectrogram and then decomposed using the SS-ONMF method into W and H matrices. In
order to filter the original signal, the matrix W consists of R OFB selectors. There are five steps in this process:
1) spectrogram calculation of the diagnostic signal; 2) factorization of the spectrogram; 3) band selection; 4)
original signal filtering; 5) assessment of impulsiveness (by kurtosis) or periodicity (estimation of the envelope-
based spectral indicator (ENVSI)). The SS-ONMF is compared with the following competitive methods: NMF
with multiplicative updates (NMF-MU), orthogonal NMF through subspace exploration (ONMFS), and info-
gram. The [6,15] range of ranks was tested for the NMF-based algorithms and 100 Monte Carlo trials were
performed for NMF methods, because of the non-convexity of NMF algorithms.

In the experiments, we evaluated two real signals. The first signal is a vibration signal with Gaussian
noise from the test rig. The second signal is an acoustic signal from a belt conveyor. The signals and their
spectrograms are presented in Figure 1.

(a) Gaussian noise (b) non-Gaussian noise

(c) Gaussian noise (d) non-Gaussian noise

Figure 1: Recorded real vibration signal with Gaussian noise (a), its spectrogram (c) and real acoustic signal
with non-Gaussian noise (b), its spectrogram (d).

Figure 2 demonstrates that while NMF-MU and SS-ONMF produce similar OFBs, SS-ONMF has the least
amount of spectral leakage. As a result, the kurtosis is highest for the filtered signals using SS-ONMF. It is the
result of both the orthogonality constraints and the improved stability of SS-ONMF in comparison to ONMFS.
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(a) SS-ONMF, Kurtosis: 28.1 (b) ONMFS, Kurtosis: 4.1 (c) NMF-MU, Kurtosis: 11.6 (d) Infogram, Kurtosis: 5.3

Figure 2: Exemplary filters and real Gaussian noisy signals filtered with analyzed methods.

The performance of the considered methods for filtering the acoustic signal with non-Gaussian disturbances
can be observed in Figure 3. In such a situation, the signal cannot be evaluated using kurtosis, because of non-
Gaussian impulses that occur. Hence, the filtered spectra were evaluated using the ENVSI measure. As can
be seen, SS-ONMF offers the most accurate filter (zero values are between 5-12 kHz and 0-3.5 kHz), which
points directly at an informative frequency band. The filtered signals obtained with ONMFS and NMF-MU
are significantly noisier than SS-ONMF. When comparing all of the methods, SS-ONMF provides the highest
ENVSI for the analysis of the envelope spectra.

(a) SS-ONMF, ENVSI: 0.19 (b) ONMFS, ENVSI: 0.07 (c) NMF-MU, ENVSI: 0.14 (d) Infogram, ENVSI: 0.09

Figure 3: Exemplary filters and real non-Gaussian noisy signals filtered with analyzed methods.

4 Conclusions

An innovative method for vibration/acoustic flaw identification in rolling element bearings has been used in
this work. It is based on spectrogram factorization with an ONMF for the detection of filter characteristics. The
results made clear how crucial orthogonality constraints are to generate a highly selective filter characteristic
that only encompasses the useful frequency region. The characteristic values are primarily zeros outside of
the band. he proposed approach provides better results than the state-of-the-art methods for signals with both
Gaussian and non-Gaussian noise.
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