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Abstract. Since as a rotating machinery, the gearbox is an important source of vibration, the 

identification of signals and parameters of the component content of the gearbox is necessary 

for the monitoring of the system. Within the mechanism, the rotation of elements with periodic 

discrete geometries (bearings, gears, turbines, ...) is the origin for potential excitations which 

are commonly cyclic. These excitations are therefore characterized by frequencies that evolve 

with rotation speed that reconstructing them, is equivalent to an inverse problem or an 

identification problem. The main problem is to find the right external excitation conditions 

particularly in torque to reveal behaviors that are either resonances (a well-known linear 

problem and treated by identification) or internal excitations (less known and less well-

treated). The difficulty here lies effectively in non-stationary operating conditions for a good 

exploitation of time and angular Fourier Transform framework. 

Introduction 

 
The global dynamic behavior of the system is influenced by rotating velocity, the superposition 

of its eigenmodes, and the internal exciting frequencies. This behavior also varies as the 

angular speed changes. When the frequencies of angle-periodic phenomena correspond to the 

frequency values of one or more eigenmodes, the cyclic behavior becomes more pronounced 

and their magnitude amplifies. To address this, it is important to distinguish the time-periodic 

phenomenon associated with the system's modal response from the angle-periodic behavior 

generated by components like gears and bearings. The primary objective of analyzing the non-

stationary operating conditions is to facilitate the distinct separation of both time-related and 

angle-related phenomena present within the signals. 

To achieve this separation, using the angular approach and angle Fourier transform, the 

magnitude of the time-dependent phenomenon in the angular spectrum can be reduced as the 

energy is distributed across a bandwidth of angular frequencies. This bandwidth is guessed by 

the range of operating speed. Previous studies [1] have shown that a time-dependent artifact 

appears in the spectrum when the angular speed does not vary significantly. Therefore, it is 

necessary to have a wide swept frequency range to adequately disperse the energy associated 

with the modal responses. Additionally, the length of the time history signal is a crucial 

parameter that should be sufficiently long to effectively mitigate time-related effects within the 

angular spectrum. 

Under non-steady operating conditions, as the rotating speed changes, higher frequencies are 

induced in the signals, especially if this evolution takes place along longer time history signals. 

However, using an excessively large swept frequency interval relative to the system's resonance 

frequencies can spread the energy over an extremely wide frequency range, making it 

challenging to identify the eigenmodes and Frequency Response Function (FRF). Similarly, 

speaking of the length of temporal signals, the increased length leads to higher frequency 

resolution, requiring a smaller sampling step. This, in turn, results in a loss of accuracy in the 

identification process too. 

Hence, to find the right external excitation conditions, the key challenge lies in finding the right 

balance between the length of the temporal signal and the rate at which the rotational speed 



increases. This trade-off is necessary to achieve both fine angular resampling and effective 

mitigation of time-dependent phenomena within the angular spectrum, while also ensuring 

accurate estimation of the FRF and the identification procedure for resonances. 

The system of study, illustrated in Figure 1, is a single-stage gear transmission system. There 

are two degrees of freedom, translation 𝑥𝑖 and rotation 𝜃𝑖   associated with each gear (i is the 

gear number) with mass and inertia, respectively 𝑀𝑖 , and 𝐼𝑖  . The first gear inertia i.e., 𝐼1 is 

subjected to a driving torque 𝑇𝑀 , and the second one i.e., 𝐼2, is exposed to a load torque 𝑇𝑅 .  

 

 

Where 𝐹𝐺𝑒𝑎𝑟  is the gear transmission force. 

As is depicted by Figure 2., the presence of the cyclic internal excitation associated to the gear 

transmission introduces a non-linear coupling which is characterized by the angular position 

of the reference shaft, denoted by 𝜃1  : 
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Figure 2. Block diagram of the system under consideration 
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Figure 1. The schema and free body diagram of a gear coupling 



Where 𝑓𝑒𝑣
𝑟𝑒𝑣Τ  is the mesh harmonic component in the load. 

In order to evoke the most informative reaction from the system and ensure that the frequency 

of the stimulation covers a specific range of interest, the concept of sine-sweep excitation can 

be employed. According to the definition [eq 1.], for a linear sweep rate, the frequency variation 

of the actual output signal 𝑦(𝑡) corresponds with the instantaneous frequency 𝑓(𝑡), which is 

determined by the time derivative of the phase 𝜓(𝑡). 

{
𝑦(𝑡) = 𝑠𝑖𝑛(𝜓(𝑡) + 𝜙0)
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Using eq 1., and from analogy, once we can rewrite 𝑦(𝑡), ( 𝜙0 = 0), to have the nonlinear 

internal cyclic excitation, depending on the angular position of the shaft 𝜃1(𝑡) : 

{
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𝑟𝑒𝑣Τ ∙ 𝜃1(𝑡))                      
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Hence, to achieve a frequency sweep across a specific range, it is necessary for the system to 

operate under non-stationary conditions, resulting in significant variations in the 

instantaneous angular speed (IAS) of the shaft over time. Consequently, the signal we are 

looking as the response of the system during this analysis is the IAS signal of each shaft. To 

induce an increase in the angular speed, the system is stimulated by a ramp-like external 

driving torque. The parameters of the excitations, whether internal (e.g., 𝑓𝑒𝑣
𝑟𝑒𝑣Τ ) or external 

(e.g., ramp rate), are adjusted based on the physical properties and characteristics of the 

system. 

A frequency-domain technique utilizing the Least-Squares Complex Frequency (LSCF) 

estimator and its Poly-reference implementation ([2]) has been employed to detect temporal 

events. The key benefit of utilizing the LSCF estimator is its ability to generate “fast-stabilizing” 

stabilization chart. 

Results and Discussion 
 

According to eq 2., the angular speed is equivalent to the instantaneous frequency of the 

present cyclic excitation, and under non-stationary operating conditions, the rate at which it 

ramps up, induces frequency sweep over an interval of time. Hence, in order to have a correct 

separation of time-related phenomena from cyclic ones and improved signal identification it is 

crucial to find proper working conditions.  

Figure 2. a, presents a meticulously induced swept frequency signal, by adding a moderated 

ramp in the rotational speed through a torque. The two correct resonances of the system are 

located at frequencies 152.55 𝐻𝑧 and 275.98 𝐻𝑧. Although the induced instantaneous 

frequency by angular speed (cyclic excitation) covers the interval of [23  248] 𝐻𝑧, which is lower 

than the system's second resonance, the superposition of the transient response with the forced 

response ensures precise identification of temporal phenomena during varying working 

conditions which is depicted in Figure 2. b.  

Furthermore, the length of the temporal signal was also chosen accordingly to make a balance 

between a time-phenomena identification and angular post-processing analysis. As a result, 

imposing a suitable operating condition, regarding the characteristic of the system makes it 



possible to perform a correct identification of resonances and reducing the effect of temporal 

phenomena on the angular spectrum to identify the cyclic harmonic components within the 

signals.  

 

 

Conclusion 
 

In conclusion, the accurate identification of signals and parameters in a gearbox is essential 

for system monitoring due to its significant role as a source of vibration. The cyclic excitations 

generated by rotating elements with periodic discrete geometries pose a challenge in 

reconstructing their frequencies, as they vary with rotation speed but are definitely valuable 

excitations for FRF identification of structural parts. The presence of resonances and internal 

excitations further complicates the identification process, particularly under non-stationary 

operating conditions. To address this, a careful balance needs to be struck between the length 

of the temporal signal and the rate at which the rotational speed increases. This ensures 

effective separation of time-related and angle-related phenomena within the signals, 

facilitating accurate estimation of the Frequency Response Function (FRF) and resonance 

identification. Then by utilizing a meticulously induced swept frequency and appropriate 

working conditions, it becomes possible to mitigate temporal phenomena and achieve precise 

identification of cyclic phenomena. 
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a) b) 

Figure 2. a) Instantaneous Angular Frequency of the response.  b) Stabilization Chart, displaying the estimated FRF by LSCF 
and comparing with the measured one. 
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