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Abstract
The Multi-Order Probabilistic Approach (MOPA) is a method for estimating the instantaneous angular speed
from vibration signals with high precision. However, determining the optimal choice of inputs can be challeng-
ing as the method requires many input parameters, including the window size selection used to generate the
spectrogram for computing the probability density functions. This study presents a new approach that utilises
statistical indicators to evaluate the information content of various window sizes and selects the optimal size for
each signal segment. The algorithm is tested using simulated sensor data and real data from offshore wind tur-
bines, and the results are compared to benchmark parameters such as the Root Mean Squared Error (RMSE).
The results show that the proposed approach provides similar accuracy in estimating angular speed without
the necessity to pre-select a window size for the spectrogram. Overall, this study demonstrates that using an
adaptive window based on statistical indicators can improve the flexibility of MOPA as well as reduce the time
required to detect the appropriate window for each data set.

1 Introduction

Monitoring plays a pivotal role in various applications, especially in the domain of rotating machinery such
as wind turbines. Vibration monitoring is widely recognised as one of the primary methods employed for this
purpose. Spectral analysis methods are typically used to identify faults occurring in the rotating components
of the machinery, including the gearbox, bearings, and shafts. However, a significant challenge arises due to
the variable operating conditions of rotating machines, resulting in a phenomenon known as peak smearing. To
mitigate this issue, signal resampling is employed, necessitating the knowledge of the Instantaneous Angular
Speed (IAS).

IAS can be obtained through various means, such as rotary encoders or visual trackers. However, these
approaches often prove to be expensive or impractical in certain scenarios. As an alternative, indirect meth-
ods based on vibration analysis have been explored, including techniques such as the Hilbert transform [1],
Bayesian estimation [2], and the inaction method [3]. Despite their potential, these methods encounter several
challenges, as highlighted in previous research [4]. These challenges include dealing with a low signal-to-
noise ratio, the presence of multiple harmonics in the signal, and the interaction between rotation harmonics
and the machine’s structural resonance. Several other methods, such as Phase Demodulation, Iterative Phase
Demodulation [5], Multi-Order Probabilistic Approach (MOPA) [6], Teager Kaiser Energy Operator (TKEO)
[7], ViBES [8], and Maximum tracking in combination with a Vold-Kalman filter [9], have been proposed. In a
comprehensive review of these methods, Peeters et al. conclude that each approach has its own advantages and
limitations, resulting in varying levels of applicability and accuracy [8]. Notably, vibration data typically ex-
hibit multiple harmonics rather than a single dominant frequency. Methods capable of converging on multiple
harmonics are particularly valuable. According to Peng et al., MOPA appears to be one of the most accurate
methods, with the possibility of Phase Demodulation being more accurate when harmonics have a high signal-
to-noise ratio throughout the entire record [10]. A Multi-harmonic Phase Demodulation method was developed
to achieve high precision by combining the benefits of MOPA - multiple harmonics - and the accuracy of phase
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demodulation when the harmonic with the highest signal-to-noise ratio is identified [11]. However, the use of
Multi-harmonic Phase Demodulation requires knowledge of the initial speed, which adds complexity to the pro-
cess. Hence, this paper focuses on estimating IAS using the MOPA method [6]. MOPA is capable of tracking
harmonics in a Time-Frequency Representation (TFR) of the vibration signal, which can vary in complexity.
However, the effectiveness of MOPA heavily relies on the quality of the TFR, suggesting the potential for en-
hancing speed estimation by improving the TFR’s quality. Nevertheless, generating a high-quality TFR can be
challenging, resulting in noisy speed estimations or incorrect convergence of MOPA on the wrong harmonic.

Akan et al. described the various methods for generating a TFR [12]. Time-Frequency Distributions is the
first category, including the Short-Time Fourier Transform (STFT) in the linear case [13], and Cohen’s bilin-
ears such as the Wigner-Ville transform [14]. Additionally, Wavelet transforms [15], Time-Frequency Atomic
Decompositions (with the Gabor expansion [16] being the most well-known), and data-adaptive mode de-
composition methods are commonly employed [12]. However, many of these methods can be computationally
expensive, require careful parameter optimisation, or involve conceptual intricacies due to unclear relationships
and kernel functions. Among the different methodologies, STFT is the most widely used and understandable
TFR. Therefore, this work focuses on producing an STFT that minimises the MOPA speed estimation error
while reducing user intervention.

The main challenge with STFT is the inherent tradeoff between time and frequency resolution, as dictated
by the Heisenberg-Gabor uncertainty principle [17]. In other words, the selection of the window always in-
volves a compromise between time and frequency resolution. For instance, using small windows provides a
good time resolution but comes at the cost of a worse frequency resolution. This problem becomes even more
complex for rotating machinery, where the machine’s speed varies with time.

To address this issue, several attempts have been made. One well-known method is the Synchrosqueezing
transform (SST) [18]. SST is an invertible transformation that utilises instantaneous frequency to sharpen the
spectrogram representation by maximising energy and reducing the bandwidth of harmonics. This method has
seen advancements such as Synchroextracting transform and others [19]. However, according to Iatsenko et
al., synchrosqueezing may enhance visual representation but does not provide actual better resolution in terms
of amplitude/frequency variations [20]. Another method employed to improve the quality and interpretability
of STFT is the adaptive window. One of the earliest attempts was made by Jones and Baraniuk, who used
sparsity indices to determine the window that favours a more "peaky" distribution [21]. Building on this work,
Czerwinski and Jones proposed the Cone length to reduce computation requirements [22]. In a more recent
study, Zhong et al. obtained the Instantaneous Frequency by following the ridge of the wavelet transform and
used its gradient to define the window size [23]. Further advancements involve minimising or maximising
specific criteria, an updated version of Jones’ approach [24, 25]. Additionally, a differentiable STFT with
adaptive windows is proposed using the Shannon entropy as an optimisation criterion [26].

Previous research has emphasised the potential visual enhancements of an adaptive window STFT, yet failed
to investigate its practical implications in real-world scenarios. Therefore, this study seeks to bridge this gap
by implementing an adaptive window spectrogram and examining its direct impact on precise IAS estimation
using MOPA.

2 Proposed Method

This section presents the proposed method, starting with the introduction of the MOPA method. It then
proceeds to discuss the STFT, the modifications made to it, and finally, the definition of the indicator used for
window selection.

2.1 Multi-Order Probabilistic Approach

MOPA is tracking the harmonics directly from the TFR [6]. This is done by computing the probability
density function of the speed of the rotating component ω (in Hz). A range of speed (Ωmin,Ωmax) needs to be
given, in order to define the region that the pdf needs to be calculated. Where the pdf has a high probability -
the TFR has high amplitude - it is the most likely that this frequency is the velocity of the rotating part.
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p(Ω|H) =
1
ξ

A(Hω) for Ωmin < ω < Ωmax

p(Ω|H) = 0 elsewhere
(1)

Where p is the density function of the IAS Ω, A(Hω) is the spectrum for the given frequency ω . H is the
order of the excitation that is understudy (e.g. H = 1 if it is the first harmonic of the understudy shaft). ξ is a
normalisation factor that is given:

ξ =
∫

Ωmax

Ωmin

A(Hω)dω (2)

Since these pdfs need to be computed independently for all windows of the TFR, discontinuities might be
present, that are not existing in velocities of real-life scenarios. For that reason, continuity is applied by taking
into account not only the in question timestep but also neighbouring ones. This is performed by convolving
using a centered Gaussian with σk = γk∆t and ∆t being the time step, γ being the standard acceleration of the
IAS. The pdf including continuity, is defined as:

p(Ω j) j+k =
∫

Ωmax

Ωmin

p(Ω j|Ω j+k)dω ∝ e
ω2

2σ2
k ∗ p(Ω j+k) (3)

To account for multiple orders of the baseline harmonic, that be higher harmonics of the same component or
maybe other harmonics from other coupled components, H must be a vector of length L with all the understudy
orders. Then the pdfs need to be multiplied in order to get the final speed estimation, based on the estimation
of the pdf from all orders:

p(Ω j)s ∝

K

∏
i=−K

[Ω j] j+i (4)

with K being L/2.

2.2 Adaptive window STFT derivation

The Fourier transform is given by:

X̂( f ) =
∫

R
x(τ)e− j2π f τ dτ (5)

with f the frequency.
For a signal x(τ) with a finite number of samples N, then the discrete Fast Fourier Transform (FFT) can be

written:

X̂ [k] =
N−1

∑
n=0

x[n]e− j2πk n
N (6)

with k being the Fourier index and 0 ≤ k ≤ N −1.
The windowed version of the continuous FFT, the STFT, for an infinite-length signal, is given to be:

X(t, f ) =
∫

R
x(t + τ)w(τ)e− jωτ dτ (7)

with t the time, w(τ) is the window that is used to define the length and location of the segment of the signal
to be studied, as well as potential tapering. For the discrete, in time and frequency, case of a finite signal, the
equation (7) can be transformed into the following:

X [t,k] =
N−1

∑
n=0

x[t +n]w[n]e− j2πk n
N (8)

where t and k denote the starting time point for the localised Fourier Transform and Fourier index accordingly
(again 0 ≤ k ≤ N−1). N defines again the length of the discrete Fourier Transformation, while the variable n is

3



employed to denote the specific point (sample index) of the extracted segment from the original time function
using the window w[n]. In other words, the algorithm computes for each segment of signal starting at time t an
FFT of length N, using a window w that defines the tapering. By applying this process to multiple time steps,
a spectrogram is generated. The step in time defines also the overlapping of data, which is often used for better
accuracy.

As mentioned earlier, the objective of this study is to implement an adaptive window STFT. The aim is to
dynamically update the window length for each timestep, t, based on a chosen indicator. To achieve this, the
variable N, which determines the number of samples (FFT length), needs to be time-dependent. However, this
approach results in spectrogram segments with varying time and frequency resolutions. To address this issue,
zero-padding is applied to the signal segment, allowing N to remain constant and mitigating the resolution
discrepancies. The signal used for each window can be defined by Equation 9:

x⃗ = [0 · · · 0

variable length M(t)︷ ︸︸ ︷
x[t] · · ·x[t +M(t)] 0 · · · 0︸ ︷︷ ︸

constant length N

] (9)

where M(t) represents the segment length, determined by the indicator, that is then subjected to zero padding.
This ensures that the frequency resolution remains consistent and facilitates the utilisation of the Time-Frequency
Representation (TFR) with MOPA.

2.3 Indicators

To determine an appropriate window size, an indicator is utilised in an iterative manner for each signal
segment. As previously explained, MOPA calculates the probability density of the speed along the time axis,
with higher accuracy achieved when the TFR representation exhibits more pronounced harmonics.

Peak smearing can occur in the spectrum when there is acceleration (positive or negative) in the rotating ma-
chine, as the harmonics do not maintain a constant frequency. Different segments may require varying optimal
window sizes depending on the level of acceleration. Typically, the window that exhibits the highest sparsity in
the spectrum, indicating a concentrated spectral density at a specific frequency, is considered favourable. There-
fore, indicators such as the L1 norm, which assesses sparsity, can effectively determine the window with the
most pronounced frequency peak. When acceleration is present, the indicator tends to favour smaller windows
to minimise peak smearing, whereas in the absence of acceleration, larger windows are preferred for improved
frequency resolution.

The primary indicator employed in this study is the Hoyer index. Based on Hurley and Rickard’s research,
the Hoyer index is regarded as one of the most accurate measures of sparsity, surpassed only by the Gini index
[27]. However, the Gini index requires the spectrum values to be sorted, making it computationally intensive.
Note that Lp = (∑ X̂ p)1/p with X̂ being the result of the FFT, so that the Hoyer index is given below:

Hoyer =

√
N − L1

L2√
N −1

(10)

3 Test cases and results

In order to check the efficiency of Adaptive Short Time Fourier Transform specifically for the application
with MOPA and speed estimation, two main tests were conducted. First, a simulated signal was created in order
to verify the assumption of the sparsity index. Then the adaptive window STFT was tested on the CMMNO14
data [6].

3.1 Simulated data

3.1.1 Signal generation

To generate the simulated signal, the following steps were executed. Firstly, a shaft was created with a
predefined IAS profile, which follows a sinusoidal pattern. The IAS profile was mathematically defined by
Equation 11:
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Figure 1: SPECTROGRAM OF THE SIMULATED SIGNAL (WINDOW = 450, OVERLAP = 95%, NFFT = 4096)

V (t) =V0 +a1sin(2π fut) (11)

where a1 defines the amplitude of the first harmonic, fu is the fundamental frequency (decided such that the
signal has two periods T). V0 is the offset that defines the mean value and makes sure that the IAS is always
positive. For the case that is demonstrated later in the results, the values are selected to be: a1 = 0.01, V0 =
0.032, fu = 2e−5 such that for a signal of a duration of ttotal = 100000 seconds, the period T = ttotal/2. Note
that the acquisition frequency Fs for this particular example is selected to be 1 Hz.

In order to replicate a more realistic signal, additional harmonics were added to the signal. Six harmonics
were included, and Gaussian noise was applied (µ = 0 and σ2 = 0.1). Considering that the maximum amplitude
of the signal is defined as 1, then σ2 = 0.1 corresponds to a signal-to-noise ratio (SNR) of 20. Moreover, two
harmonics representing a planetary gearbox with a gear ratio of 0.3636 and a meshing order of 5.091 were
incorporated into the signal, along with corresponding noise. Lastly, a second shaft rotating at 0.3636 times the
speed of the first shaft was included, accompanied by noise and seven harmonics.

The resulting spectrogram of the simulated signal is depicted in Figure 1. Notably, the harmonics of the
gearbox are prominently visible in the spectrogram, exhibiting stronger magnitudes compared to the shafts.

3.1.2 Results

The setup of the adaptive window STFT, MOPA and the parameters of the baseline spectrogram are pre-
sented in table 1:

Adaptive Window Base spectrogram MOPA
Nw: (64 - 1536, 16) Nw: (64 - 2048, 128) Hi: [0.36, 1, 5.09]
∆t: 20 ∆t: Nw*0.05 kw: 15
Hann window Hann window γ : 1
NFFT : 4096 NFFT : 4096 ωmin: 0.022 Hz

ωmax: 0.042 Hz

Table 1: SETUP PARAMETERS AND THEIR RANGE FOR THE SIMULATED CASE

where Fs is the signal acquisition frequency, Nw the window used (in this case it is a range), ∆t the step in
time of the spectrogram (depends on the overlap), NFFT is the FFT size. ωmin and ωmax are the minimum and
maximum expected speed, γ is the expected acceleration, kw is the number of windows used for continuity and
Hi is the list of orders that are taken into account in MOPA. Note that two harmonics per order are considered.
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Figure 2 displays the speed estimation (red) in close proximity to the actual speed (black), indicating a
high degree of accuracy. The associated window sizes are shown in blue. Remarkably, at each vertex of the
parabolic shape, where acceleration is reduced, the window tends to increase in size, whereas, during periods
of significant acceleration, the window size decreases. Figure 3 provides a visualisation of the actual window
sizes relative to the absolute acceleration, thereby affirming the hypothesis put forth in Section 2.3 regarding the
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Figure 2: SPEED ESTIMATION AND WINDOW SIZE RESULTS
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Figure 4: RMSE ERROR PER WINDOW SIZE AGAINST ADAPTIVE WINDOW

relationship between sparsity and speed variation. The green line in the figure emphasises the zero acceleration
boundary.

To evaluate the accuracy of this method compared to a typical spectrogram, various spectrograms with
different window sizes were tested, as outlined in Table 1. The results presented in Figure 4 demonstrate that
the accuracy of MOPA, when applied in conjunction with the adaptive window spectrogram, is nearly equivalent
to that achieved with an optimal constant window. This finding is highly promising, especially considering that
the simulated signal is relatively straightforward with no significant variations in behaviour. Moreover, the
automatic selection of an optimal or near-optimal spectrogram by simply defining a window range not only
achieves good accuracy but also reduces the required post-processing time for the signal.

3.2 CMMNO 2014 dataset

The CMMNO 2014 dataset includes a vibration signal of a wind turbine gearbox. The duration of the
signal is 547 seconds and the acquisition frequency is 5 kHz. More information about the dataset can be found
in previous works [6, 8].

3.2.1 Results

The configuration details of the adaptive window STFT, MOPA, and the parameters used for the baseline
spectrogram in the CMMNO case are summarised in Table 2. For this particular case, the selection was made
to utilise three harmonics of the first two orders (Hi), along with two harmonics from the remaining orders.

Adaptive Window Base spectrogram MOPA
Nw: (1500 - 15000, 128) Nw: (500 - 14500, 1000) Hi: [1, 5.3, 26, 29]
∆t: 750 ∆t: Nw*0.2 kw: 10
Rectangular window Rectangular window γ : 0.4
NFFT : 20000 NFFT : 20000 ωmin: 18 Hz

ωmax: 30 Hz

Table 2: SETUP PARAMETERS AND THEIR RANGE FOR THE CMMNO CASE
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Figure 5 presents a comparison between the estimated and the actual IAS. Notably, the estimated IAS
demonstrates smoothness, particularly considering that only 10 windows were involved in the convolution
process. The tendency of the window size to increase in regions where the speed remains constant or exhibits
relatively small acceleration is further depicted in Figure 6.
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Figure 5: SPEED ESTIMATION AND WINDOW SIZE RESULTS
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Figure 6: WINDOW SIZE (MAX HOYER) AGAINST ACCELERATION

Once again, the adaptive window spectrogram yields favourable results, exhibiting accuracy comparable to
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that achieved with the optimal window, as illustrated in Figure 7. It is worth noting that the Hoyer index may
be influenced by harmonics present in the signal but not utilised in the speed estimation. Nonetheless, these
findings are highly promising, indicating the method’s remarkable precision. With further advancements and
refinements, there is strong potential for the method to significantly surpass the performance of the standard
approach.
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Figure 7: RMSE ERROR PER WINDOW SIZE AGAINST ADAPTIVE WINDOW

3.3 Discussion

Currently, the adaptive window spectrogram offers the significant advantage of a more simplified deploy-
ment, eliminating the need to manually select a specific window size and instead focusing on a window range.
The proposed automatic approach demonstrates an impressive ability to achieve a high level of accuracy, even
without prior knowledge of the true IAS. In practical scenarios, it is often challenging to determine the true
IAS, which in turn makes it difficult to identify the optimal fixed window size based on the estimated IAS.
However, this paper provides compelling evidence that the proposed adaptive scheme effectively approximates
the attainable optimal accuracy, despite not having access to the true IAS information. This significant finding
showcases the robustness and reliability of the adaptive window spectrogram, as it consistently achieves results
that are comparable to the accuracy achieved with the optimal window size, even in the absence of knowledge
about the true IAS.

To further enhance the methodology, a variable step in time (overlap) could be implemented. This would en-
able more significant time steps when utilising larger windows, indicating lower acceleration values. Similarly,
smaller steps in time would be more suitable for detecting acceleration in situations where smaller windows are
employed.

One limitation of the iterative approach is the computational time required, which surpasses that of a typical
spectrogram by an order of magnitude. The computational demand of the adaptive window spectrogram is
mainly dependent on the number of windows being tested. Importantly, the time needed to generate the adaptive
spectrogram is considerably shorter compared to that required for a single MOPA execution. As a result, if a
significant number of fixed windows need to be tested in conjunction with MOPA to identify the optimal IAS
estimation, the process would be significantly more time-consuming compared to the adaptive spectrogram
approach. In the future, alternative approaches could be explored, such as gradient-based optimisation or
physics-informed decision-making, tailored to specific applications. Additionally, potential improvements in

9



accuracy could be achieved by employing different sparsity indices or optimisation functions.
Considering that MOPA functions as a multi-harmonic speed estimator, optimising the spectrogram on

a per-frequency bin basis is an intriguing avenue to explore. Given the substantial difference in frequency
between lower and higher harmonics, determining the optimal window for each frequency bin could potentially
enhance accuracy across the entire frequency range.

To validate the effectiveness of the adaptive window spectrogram in real-life scenarios, future work should
involve conducting tests using vibration data obtained from operating wind turbines. This will provide valuable
insights into the efficiency and applicability of the method under practical conditions.

4 Conclusions

In this study, an adaptive window spectrogram was developed for the purpose of speed estimation in rotating
machines when used in conjunction with MOPA. The fundamental concept behind this approach was to identify
an optimal window for assessing the spectral density of the signal under different operating conditions. Each
signal segment was subjected to iterative testing with various windows, and the window with the highest Hoyer
index was selected.

To evaluate the effectiveness of the method, both a simulated signal and CMMNO 2014 data were utilised.
The proposed adaptive window spectrogram demonstrates accuracy on par with the optimal fixed window size,
without relying on knowledge of the true IAS. This highlights the robustness and practicality of the method,
making it a promising and valuable tool for speed estimation in rotating machines. Furthermore, by employing
the adaptive window approach, the need for time-consuming manual selection of the optimal window for each
machine is eliminated, albeit at the cost of slightly slower spectrogram generation.

Moreover, the inherent physical connection between window selection and the acceleration of the rotating
machine lends credence to the adoption of this methodology. Future enhancements could potentially refine
the adaptive window spectrogram and elevate its performance even further. Taken together, the findings from
this study provide evidence supporting the benefits and justification for implementing an adaptive window
spectrogram.
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