A massively parallel matrix free FE-based multigrid method for simulating the behavior of heterogeneous materials using large scale CT images

Dr. Julien Réthoré

Ecole Centrale de Nantes, Institut de Recherche en Génie Civil et Mécanique, Nantes, France Julien.Rethore@ec-nantes.fr

Image-based modeling is interesting as it would allow for modeling a material accounting for all the complexity of its microstructure. In practice building a FE mesh from an raw image is very complex as the boundaries between the different phases are not sharp and a lot of micro-defects can be observed. To circumvent these difficulties, we propose to use the regular voxel mesh of the image as a computational mesh. The consequence is that the number of elements can reach 10 billion and a material property field has to be considered based on the image grey level. A multi-grid acceleration scheme is developed to solve linear elasticity and thermal conductivity problems. To deal with large images, a hybrid parallel implementation of a matrix free resolution strategy is proposed. Examples using real X-ray tomography images of composite materials illustrate the ability of the proposed strategy to perform image-based 3D FE analysis.