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Background and motivations

X-ray tomography opens new way to analyze materials

• 3D images µstructure (RVE)→ computational homogenisation
• in-situ experiments

• DVC: displacement / strain at the micro-scale
microstructure↔ structure ( geometry, BCs,...)

• ↗ for crack / singularity

Crack in nodular graphite cast iron

PhD thesis J. Lachambre

Analysis of DVC fields
SIF, crack tip position,...
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Background and motivations

X-ray tomography opens new way to analyze materials

• 3D images µstructure (RVE)→ computational homogenisation
• in-situ experiments

• DVC: displacement / strain at the micro-scale
microstructure↔ structure ( geometry, BCs,...)

• ↗ for crack / singularity

Laminate composite material

Lecomte-Grosbras, P., et al.. Experimental Mechanics, 2015.

Averaged Uz on the free surface

Strainxz on the free surface
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Background and motivations

X-ray tomography opens new way to analyze materials

• 3D images µstructure (RVE)→ computational homogenisation
• in-situ experiments

• DVC: displacement / strain at the micro-scale
microstructure↔ structure ( geometry, BCs,...)

• ↗ for crack / singularity

Usually DVC results are difficult to analyse / interpret
• microstructure↔ structure
• DVC (spatial-)resolution ≈ a few tens of voxels
• neither a micro displacement nor a macro displacement

→ need to perform numerical simulations at the micro-scale to
• understand these interactions
• analyse the DVC results 2



Objective & questions

Perform automatically numerical simulations using large CT images,
e.g. 8 billion voxels, of heterogeneous materials.
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State of the art

Well-known numerical methods:

• Finite Element Methods (FEM): (LENGSFELD et al. 1998, FERRANT et al. 1999)
• Fast Fourier Transform (FFT): (NEMAT-NASSER et al. 1982, SUQUET 1990)
• Finite Difference Methods (FDM): (GU et al. 2016)

LENGSFELD M., SCHMITT J., ALTER P., KAMINSKY J., LEPPEK R., Medical engineering & physics, 20, 515-522, 1998.
FERRANT M., WARFIELD S. K., GUTTMANN C. R., MULKERN R. V., JOLESZ F. A., KIKINIS R., International Conference on Medical Image Computing
and Computer-Assisted Intervention Springer, 202-209, 1999
NEMAT-NASSER S., IWAKUMA T., HEJAZI M., Mechanics of materials, 1, 239-267, 1982.
SUQUET P., Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la
Terre,311, 769-774, 1990.
Gu, H., Réthoré, J., Baietto, M.-C., Sainsot, P., Lecomte-Grosbras, P., Venner, C. H., Lubrecht, A. A., Computational materials science, 112, 230-237,
2016
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State of the art

Advantages of each numerical method for large scale CT simulations:

• FEM:
• Abundant element types can deal with complex geometry
• Implementation of boundary conditions is straightforward

• FFT:
• Performed on the regular voxel grid
• Efficient for periodic problems

• FDM:
• Mesh generation is efficient (one voxel/point)
• Smaller memory requirement

Drawbacks of each numerical method for large scale CT simulations:

• FEM: expensive on Meshing step and relaxation step
• FFT: only for periodic boundary condition problems
• FDM: boundary conditions are difficult to implement
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Proposed strategy

FEM with one node = one voxel
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Thermal problem

Thermal conduction in heterogeneous materials:


∇ · (α∇T) = 0
T = T0 on Γ1

T = T1 on Γ2

α · ∇T · n = 0 on the other surfaces
Figure 1: Boundary
conditions

• α is a high contrast variable coefficient (1∼1 000)
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FEM

The weak form of the original equation:

−
∫
∂Ω

α∇T · #»nϕdS+
∫
Ω

α∇T · ∇ϕdΩ = 0

which is also referred to: qin = qex with{
qin = −

∫
Ω
α∇T · ∇ϕdΩ

qex = −
∫
∂Ω

α∇T · #»nϕdS

One voxel per elementary node, at node j with MF-FEM:

(qin)j = −
∑
e

∑
i

∑
m

8∑
g=1

wg∇mϕiα
gTi∇mϕj

αg is the conductivity at Gauss integration point:

αg =
8∑
i=1

αiϕi
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Matrix free FEM

Jacobi relaxation node by node without matrix assembly:

T iter+1i = T iteri + ω
(qex − qin)i

stiffi

ω: relaxation coefficient.

stiffi =
∑
e

∑
m

8∑
g=1

wg∇mϕiα
g∇mϕi

Matrix free FEM (MF-FEM) (HUGHES et al. 1983):

• Dispenses from assembling stiffness matrix: Size of stiffness
matrix (sparse):3.8 TB for a problem with 18 billion of DoF

• Suited for voxel conversion problems (one element type)

HUGHES T. J., LEVIT I., WINGET J. Computer Methods in Applied Mechanics and Engineering, 36(2), 241–254, 1983.
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Performance of MF-FEM

Proposed Jacobi MF-FEM for a 1293 nodes spherical thermal
conduction problem with a contrast of 10
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Figure 2: Convergence
Figure 3: Spherical inclusion

A residual of 10−2 with a cost of 4000 WU

WU is the cost of one relaxation
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Efficiency of standard MG methods

Single level FMG scheme
Residual achieved 1.55× 10−2 7.89× 10−6

Cost / WU 4139 19.6
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Figure 4: Convergence of single level (left) and FMG scheme (right) on a 1293

nodes spherical thermal conduction problem with a contrast of 10
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MG convergence for high contrast

Convergence of MG on a 1293 nodes spherical thermal conduction
problem with different material property contrasts
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Standard MG can not deal with problems with large variations
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Limitation of serial computing

• memory and computational time
• 2049× 2049× 2049 voxels→ more than 8× 109 nodes
• 8 billion DoF→ 239 days .
• 3× 8 billion DoF→ 3×239 days ≈ 2 years !!!.

Parallel computing must be implemented to avoid these difficulties

The solver has to be designed with a good parallel performance
Jacobi is a good candidate !
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Supercomputer architecture

Figure 5: Architecture of Liger in ICI, Centrale Nantes
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Parallel programming

• Distributed memory:
Message Passing
Interface (MPI) on
nodes

• Shared memory:
OpenMP in node

Figure 6: Ghost points

Coarsest grid: 4× 4× 4 elements, i.e. no more than 64 MPI for this level 18



Parallel programming

Hybrid MPI/OpenMP: several OpenMP / MPI

Figure 7: One node with 2 processors in Liger

64 MPI × 12 OpenMP = 768 cores (Limited at 1 000 cores for each
laboratory)

Advantages of Hybrid MPI/OpenMP:

• Smaller memory requirement (fewer ghost points)
• Easier post processing (1 Output file / MPI)
• Suited for MG methods 19



Parallel performance

The figure is obtained by solving a one billion DoF problem.
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768 cores: about 80% of optimum speedup.

20



21



Nodular graphite cast iron image

Image obtained by RANNOU et al.
Region Of Interest (ROI): 257× 257× 257 voxels, ≈50 million DoF

where GL is the gray level on each voxel, which is an integer between
0 and 255.
RANNOU J., LIMODIN N., RÉTHORÉ J., GRAVOUIL A., LUDWIG W., BAÏETTO -DUBOURG M.-C., BUFFIERE J.-Y., COMBESCURE A., HILD F., ROUX S.,
Computer methods in applied mechanics and engineering, 199, 1307-1325, 2010.
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Crack opening in cast iron

• Iron: E = 210 GPa, ν= 0.3
• Carbon: E = 21 GPa, ν= 0.2
• Size: L×L×L
• Crack thickness: 3 voxels
• Straino = 1%

Boundary conditions:
uz = 0, on Z = − L

2

uz = 0.01L, on Z = L
2

~̂u = ~0, at (0,0,− L
2 )

x y

z
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Crack opening

Figure 8: The Young’s modulus and the strainzz in cast iron. The
displacement is multiplied by a factor of 20. 24



Crack opening

Iron Cast iron

Figure 9: Strainzz in iron and in cast iron. The displacement is multiplied by a
factor of 20. 25



Crack opening

Iron Cast iron

Figure 10: Strain concentrations on the crack font in the cast iron and in the
iron. The displacement is multiplied by a factor of 20. 26



Laminate composite material

The image of a composite material obtained by Lecomte-Grosbras et
al.(2015): E-glass fiber with M9 epoxy resin

• 700× 1700× 1300 voxels
• Four layers: 15◦,−15◦,−15◦ and 15◦

YZ PlaneXY Plane XZ Plane

Lecomte-Grosbras, P., Réthoré, J., Limodin, N., Witz, J.-F., Brieu, M., 2015. Three-dimensional investigation of free-edge effects in laminate
composites using x-ray tomography and digital volume correlation. Experimental Mechanics 55 (1), 301–311.
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Mechanical problem

Experimental results obtained by digital image correlation (DIC)

Figure 11: Stainxz

Free edge effects in this laminate structure

• Strain concentrations in the ply interface
• Large displacement gradient in the ply interface

Lecomte-Grosbras, P., Réthoré, J., Limodin, N., Witz, J.-F., Brieu, M., 2015. Three-dimensional investigation of free-edge effects in laminate
composites using x-ray tomography and digital volume correlation. Experimental Mechanics 55 (1), 301–311.
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Laminate composite material

3D image

X Y

Z

Zoom

Zoom Zoom

29



Laminate composite material
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Material property

ROI: 577× 1153× 1153, i.e. about 0.8 billion voxels

• E-glass fiber: E = 80.0 GPa, ν = 0.22
• Epoxy: E = 3.2 GPa, ν = 0.22

Subsampling into
1153× 2305× 2305 voxels
≈6 billion voxels or 18 billion DoF.
Size: L×2L×2L
Straino = 1%{

~u = {0, 0, −0.01L}, on z = −L
~u = {0, 0, 0.01L}, on z = L X Y

Z
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Numerical and experimental comparison

Figure 13: Numerical results Figure 14: Experimental results

A good correlation can be found between the numerical simulation
and the DIC experiment.

LECOMTE-GROSBRAS P., PALUCH B., BRIEU M., D E S AXC É G., SABATIER L., Composites Part A: Applied Science and Manufacturing, 40,
1911-1920, 2009.
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Numerical result

X

Z

Strain concentrations in ply interface.
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Numerical result

Figure 15: Averages of Strainxz/Straino along axis Z
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Conclusions

• The simulation with a large real tomography image (18 billion
DoF) is performed

• The proposed strategy permits to analyze deformation
mechanism at the microscopic scale

• The qualitative agreement between the simulation and the DIC
experiment confirms the accuracy to perform CT simulations

• The interaction between the crack and the microstructure shows
the indispensability to perform CT simulations

X. liu, J. Réthoré, M.-C. Baietto, P. Sainsot, A.-A.. Lubrecht, An efficient strategy for large scale 3D simulation of heterogeneous materials to
predict effective thermal conductivity, Computational materials science, 166, 265–275, 2019.
X. liu, J. Réthoré, M.-C. Baietto, P. Sainsot, A.-A.. Lubrecht, A massively parallel matrix free finite element based multigrid method for
simulations of the mechanical behavior of heterogeneous materials using large scale CT images, Computational Mechanics, online.
IDS ConnectTalent project funded by Région Pays de la Loire and Nantes Métropole
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Perspectives

• A quantitative comparison between the simulation and the DIC
experiment is advised

• Apply the measured boundary conditions
• Identify real material property of each constitutive

• Phase field method to compute the crack propagation

• Up-scaling mechanical fields to incorporate crack / µstructure
interaction in a macroscale model. Elie EID PhD thesis, ANR JCJC
METACRACK project.
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