A fairly priced, unfitted spline image-based model to assist Digital Image Correlation

Ali Rouwane^{1,2,*}, Robin Bouclier^{1,2}, Jean-Charles Passieux ¹ and Jean-Noël Périé¹

¹ ICA, Université de Toulouse, UPS, INSA, ISAE-SUPAERO, MINES-ALBI, CNRS, 3 rue Caroline Aigle, F31055 31400 Toulouse, France

² IMT, Université de Toulouse, UPS, UT1, UT2, INSA, CNRS, 135 avenue de Rangueil, F-31077 Toulouse Cedex 04, France

Key Words: Isogeometric Analysis, Finite Cell Method, Digital Image Correlation, Elastic registration.

With the development of Computed Micro-Tomography (μ -CT), it has become possible to acquire full voxel representations of materials with complex architectures. This facilitates the development of full-field measurement techniques such as Digital Image Correlation (DIC) [1]. This technique allows to estimate the displacement/strain field at the heart of materials in an non-invasive way by comparing voxel data in different load configurations. The DIC problem is ill-posed in Hadamard's sense, namely, it cannot be solved pixel wise without considering some regularization. When images do not exhibit sufficient gray-level gradient values, which is the case of cellular materials for example, the situation meets its most critical level. Our contribution concerns the development of a general DIC algorithm which identifies complex deformations in cellular materials. For that, we adapted an automated and fairly-priced image based mechanical model that accurately describes the mechanical behavior of the complex micro-structure and used it as a regularization of the inverse problem. This technique, inspired from the work by Réthoré et al. [2], consists of penalizing the internal elastic forces of the geometry represented by the image. Provided a level-set description of the material's boundary [4], we show that the Finite Cell Method [3] introduces an interesting computational context for Digital Image Correlation. In fact, when using higher order B-splines as an approximation basis, along with advanced quadrature schemes, it is possible to measure accurate strain fields that could not be obtained using traditional linear finite element DIC algorithms.

REFERENCES

- Brian K Bay, Tait S Smith, David P Fyhrie, and Malik Saad. Digital volume correlation: three-dimensional strain mapping using x-ray tomography. *Experimental mechanics*, 39(3):217–226, 1999.
- [2] Julien Réthoré, Stéphane Roux and François Hild. An extended and integrated digital image correlation technique applied to the analysis of fractured samples. *European Journal* of Computational Mechanics, 18(3-4):285–306, 2009.
- [3] Dominik Schillinger and Martin Ruess. The finite cell method: A review in the context of higher-order structural analysis of cad and image-based geometric models. Archives of Computational Methods in Engineering, 22(3):391–455, 2015.
- [4] Clemens V Verhoosel, GJ Van Zwieten, B Van Rietbergen, and René de Borst. Imagebased goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. *Computer Methods in Applied Mechanics and Engineering*, 284:138–164, 2015.