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Introduction

Estimation of displacement and strain �elds at the cellular scale of materials with complex
cellular microstructures using Digital Image Correlation.

(a) Polymetacrylimid
foam (Rohacell-51) image

obtained from X-ray
micro-tomography 7

(b) Wood cell image
obtained from X-ray
micro-tomography

Forsberg et al. [2008] 7

(c) Cattle bone image
obtained from MRI
Benoit et al. [2009] 7

(d) Nodular graphite cast
iron image obtained from
X-ray micro-tomography
Limodin et al. [2009] 4

Figure 1: Example of textures of complex materials.

More void than material −→ Poor texture makes the optimization problem di�cult without
using regularization schemes.
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Contribution

• Develop a 2D DIC algorithm that allows to estimate the displacement behind
transformation

Mechanical test

Reference con�guration  Deformed con�guration

Image-based mechanical 

modeling:

Desciption of the mechanical 

behavior: Sti�ness matrix  K 

Regularization

Use of the elastic description in order to regularize 

the inverse problem of DIC

Ir(x) = Id(x+u(x))

Image Ir  Image Id  

Figure 2: Summary of the methodology. Elastic regularization of DIC.
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Outline

1. Building the sti�ness operator K on the ROI using a fairly-priced image-based mechanical
model

◦ Recall of the FCM �ctitious domain method
◦ Presentation a geometry analysis study for �ne-tuning the model's integration parameters
◦ Presentation of a mechanical convergence study and confrontation with low order FEM

image-based models.

2. Use of the built sti�ness operator for the regularization of Digital Image Correlation
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B-splines as a numerical tool

• Deforming images by moving the control points of a B-spline control grid

(a) C0 linear B-splines (same as
linear lagrange functions)

(b) C1 quadratic B-splines. (c) C2 cubic B-splines.

Figure 3: Image deformation with B-splines of Cp−1 regularity at the element boundaries.

Ali Rouwane 5/31
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Construction of a fairly-priced image-based mechanical
model with the Finite Cell Method

• Acquired image

Figure 4: Image acquisition of a 2d sample with a complex geometry
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Construction of a fairly-priced image-based mechanical
model with the Finite Cell Method

• Level-set description of the geometry of two-phase materials:
◦ Evolution level-sets based on the convection-di�usion equation Chan and Vese [2001];

Bernard et al. [2008]
◦ Iso-value of a smooth physical representation of the target image Verhoosel et al. [2015]

Figure 5: Level-set description of the physical domain.
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Construction of a fairly-priced image-based mechanical
model with the Finite Cell Method

• Embedding the image domain in a rectangular mesh Parvizian et al. [2007]; Schillinger
and Ruess [2015]; Verhoosel et al. [2015]

Figure 6: Embedding of the level-set geometry using a B-spline mesh (here the parametric space is
equal to the physical space).
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Construction of a fairly-priced image-based mechanical
model with the Finite Cell Method

• Integrating only on the physical domain. The level-set geometry is approximated by a
quad-tree integration scheme Düster et al. [2008]; Schillinger and Ruess [2015] with a
closure tesselation scheme Verhoosel et al. [2015].

Figure 7: Image acquisition of an image of complex geometry

• Penalization of the stress tensor in the �ctitious domain.

• Other closure integration techniques
◦ Moment �tting methods Abedian et al. [2013]; Müller et al. [2013]; Joulaian et al. [2016]
◦ Smart boundary conforming octrees Kudela et al. [2016]
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Construction of a fairly-priced image-based mechanical
model with the Finite Cell Method

True shape

Image 

generation

 

Geometry

approximation

 

Pixelized geometry Geometry approximation 

from gray-scale data

Mechanical 

model 

 

Stress/Strain �eld 

computation on

the approximative geometry

 

Figure 8: Summary of the di�erent steps of the construction of a mechanical digital image-based model.

• Geometry error analysis
◦ Intrinsic geometry error:

E =
|Ã− A |

A
(1)

◦ Total geometry error:

Ē =
|Aa − A|

A
(2)

◦ Domain integration error:

Ẽ =
|Aa − Ã|

Ã
(3)

where Aa is the approximation of the area bounded by the level-set using the quad-tree
scheme. Ã and A are respectively the area of the level-set geometry and the exact area of
the reference geometry
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Ã
(3)

where Aa is the approximation of the area bounded by the level-set using the quad-tree
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Construction of a fairly-priced image-based mechanical
model with the Finite Cell Method

• Geometric error evolution:

10 1 100 101

Sm allest  subcell size in pixel size unit

10 7

10 6

10 5

10 4

10 3

10 2

10 1

E

̃E

E

(a) 30× 30 pixels in the image.

10 1 100 101

Sm allest  subcell size in pixel size unit

10 7

10 6

10 5

10 4

10 3

10 2

10 1

E

̃E

E

(b) 60× 60 pixels in the image.

Figure 9: Evolution of the errors Ē and Ẽ with respect to the size of the smallest sub-cell in pixel
size units for the two-dimensional test case.

• A su�cient quad-tree level can be set so that the smallest sub-cell size is approximately
equal to the pixel size.

l =

⌈
1

2
log2

(
nxny

nexn
e
y

)⌉
. (4)
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Comparison of the FCM image-based model to other Finite
Element-based image models

We compare with three other lower �nite element methods for computing the mechanical
solution.

Ali Rouwane 12/31



Comparison of the FCM image-based model to other Finite
Element-based image models

We compare with three other lower �nite element methods for computing the mechanical
solution.
1.Voxel based model: Convert the connectivity of the binary image into a Q4 �nite element
mesh Ulrich et al. [1998].

Figure 10: Finite element mesh of a binary image.
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Comparison of the FCM image-based model to other Finite
Element-based image models

We compare with three other lower �nite element methods for computing the mechanical
solution.
2.Marching squares algorithm: Extraction of a linear boundary and triangular meshing
Lorensen and Cline [1987]; Frey et al. [1994]; Ulrich et al. [1998].

Figure 11: Extraction of a Finite element mesh using the marching squares algorithm.
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Comparison of the FCM image-based model to other Finite
Element-based image models

We compare with three other lower �nite element methods for computing the mechanical
solution.
3.Gray-level dependant mechanical properties : Assign each pixel a mechanical property that
depends on its gray-level value. Example of a linear mechanical law for two materials.

E(v) =
v − vmin

vmax − vmin
Emax +

vmax − v

vmax − vmin
Emin

Figure 12: Mechanical propreties ranging from 1Pa to 105Pa.
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Comparison of the FCM image-based model to other Finite
Element-based image models

We compare with three other lower �nite element methods for computing the mechanical
solution.
4. Level-set based FCM with a triangular tesselation closure: Fictitious domain method on
a linear triangular geometry approximating a continuous geometry de�ned by a level-set.

Figure 13: Fictitious domain method on a binary geometry.
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Comparison of the FCM image-based model to other Finite
Element-based image models

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

σ.n= σex.n

σ.n= σex.n

uy=0

ux=0

R=1

L=4

(a) Mechanical problem de�nition.
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(b) An example of the embedding B-spline elements
with the corresponding boundary conditions.

Figure 14: Mechanical problem de�nition: elastic plate with a quarter hole. The de�nition of σex can
be found in Sadd [2009]
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(b) 60× 60 pixels in the image.

Figure 15: Evolution of the error in energy norm under mesh re�nement.
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Digital Image Correlation for cellular images

The suggested methodology aims at estimating displacement �elds at the cellular scale by
solving the DIC problem:

Ir (x) = Id (x + u(x)) (5)
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Digital Image Correlation for cellular images

The suggested methodology aims at estimating displacement �elds at the cellular scale by
solving the DIC problem:

Ir (x) = Id (x + u(x)) (5)

Figure 16: Image Ir
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Digital Image Correlation for cellular images

The suggested methodology aims at estimating displacement �elds at the cellular scale by
solving the DIC problem:

Ir (x) = Id (x + u(x)) (5)

Figure 17: Image Id
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Digital Image Correlation for cellular images

• Displacement searched in a subspace of L2(Ω) spanned by as set of basis functions:

u(x , y) = N(x , y)u (6)

• Problem (5) is changed into the minimization of the squared L2 norm

S(u) =
1

2

∫
Ω

(Ir (x , y)− Id ((x , y) + N(x , y)u))2 dxdy (7)
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Digital Image Correlation for cellular images

• Multi-level displacement estimation using a Q4 �nite element mesh.

Figure 18: Level 1 of re�nement
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Digital Image Correlation for cellular images

• Multi-level displacement estimation using a Q4 �nite element mesh.

Figure 19: Level 2 of re�nement
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Digital Image Correlation for cellular images

• Multi-level displacement estimation using a Q4 �nite element mesh.

Figure 20: Level 3 of re�nement
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Digital Image Correlation for cellular images

(a) Finite element reference displacement �eld. (b) Estimated displacemet �eld.

Figure 21: Displacement �eld comparison

Ali Rouwane 18/31



Digital Image Correlation for cellular images

(a) Finite element reference displacement �eld. (b) Estimated displacemet �eld.

Figure 22: Strain �eld comparison
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Image-based mechanical regularization of Digital Image
Correlation

Figure 23: B-spline mesh displayed the grid of B-spline control points.
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Image-based mechanical regularization of Digital Image
Correlation

• Equilibrium gap regularization Réthoré et al. [2009]

M(u) =
1

2
||Ku− f||22

−→ M(u) =
1

2
||DMKu||22 (8)

• First order gradient Tikhonov regularization

T (u) =
1

2
||DTLu||22 (9)

• The optimization functional

arg min
u∈R2n

[S(u) + λMM(u) + λTT (u)] , (10)

• Problem (10) is solved with a modi�ed Gauss-Newton scheme (see e.g. Passieux and
Bouclier [2019] for more details on the optimization scheme).
◦ Leads to an iterative scheme where a SPD linear system is solved at each iteration �>

ill-conditionned Hessian due to the poor conditionning of the sti�ness matrix
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Numerical results: comparison of the euclidian norm of the
displacement

Reference �nite element simulation

Tikhonov regularization Equilibrium gap regularization
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Numerical results: comparison of the Von-Mises strain
norm of the displacement

Reference �nite element simulation

Tikhonov regularization Equilibrium gap regularization
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Numerical results: comparison of the Von-Mises strain
norm of the displacement

(a) Strain norm of the �nite
element simulation.

(b) Strain norm of the registered
solution.

(c) Reference image Ir .

Figure 24: Zoom on a region in the ROI.

P(ux ) (pix-
els)

P(uy ) (pix-
els)

P(εxx ) P(εyy ) P(εxy )

Standard multi-level DIC 4.5×10−1 1.9×10−1 7.2×10−1 1 4× 10−1

Tikhonov regularization 1.6×10−1 1.1×10−1 1.4 1.4 4.1×10−1

Mechanical regularization 2× 10−2 3× 10−2 3.8×10−2 1× 10−2 3.5×10−3

Table 1: Precision of the measurements in terms of displacement and strain �elds.
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Conclusion and perspectives

• Conclusion
◦ Fictitious domain methods ( in particular the Finite Cell Method): an e�ective tool to

image-based mechanical modeling

Setting of user de�ned parameters (Level-set parameters, quadrature rule, element size, order of
approximation...)

◦ Digital imaging implies intrinsic geometry error due to pixelisation

The above user-de�ned parameters must be adapted to avoid over-computations.

◦ We analysed these geometric and mechanical errors and proposed a pragmatic rule to set the
Finite Cell Method parameters.

We end up with a so-called fairly priced image-based mechanical model which accuracy is the
best possible with minimal numerical complexity.

• Perspectives
◦ Generalization of the method to 3D and application to Digital Volume Correlation.
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Penalization of mechanical properties for the FCM method

The constitutive behavior law is modi�ed by considering the penalized stress tensor de�ned by:

σα(x , y) = α(x , y)σ, (11)

with

α(x , y) =

{
αp = 1 ∀(x , y) ∈ Ωp

αf = 10−q << 1 ∀(x , y) ∈ Ωf

. (12)

Instead of performing KΩf
(αf ) + KΩp (αp) we assemble two sti�ness matrices (one

homogeneous on all elements) and one only on the integration domain

K = KΩ(αf ) + KΩp (αp − αf ). (13)
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Optimization scheme

The resolution of the regularized non-linear least squares problem (10) is performed using the
following descent scheme:

u(k+1) = u(k) + d(k), (14)

where d(k) is the solution of the following Gauss-Newton system:(
HS (u(k)) + λMHM(u(k)) + λTHT (u(k))

)
d(k) = −

(
∇S(u(k)) + λM∇M(u(k)) + λT∇T (u(k))

)
(15)

and where HS is an approximation using only �rst-order derivatives of the Hessian matrix of
S . HM and HT are respectively the Hessian matrices of M and T and ∇S ,∇M ,∇T are
respectively the gradient vectors of S, M and T . The de�nition of theses six operators is
given by equations (16), (17), (18) and (19), see below:

∇S(u(k)) = −
∫

Ω

(
Ir (x , y)− Id

(
(x , y) + N(x , y)u(k)

))
N(x , y)T∇Ir(x , y)dxdy ; (16)

∇M(u(k)) = KTDT
MDMKu(k), ∇T (u(k)) = LTDT

TDTLu
(k); (17)

HS (u(k)) =

∫
Ω
N(x , y)T (∇Id)

(
(x , y) + N(x , y)u(k)

)T
(∇Id)

(
(x , y) + N(x , y)u(k)

)
N(x , y)dxdy ;

(18)
HM = KTDT

MDMK, HT = LTDT
TDTL. (19)
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Optimization scheme

T (u) =
1

2

∫
Ω
‖∇ux‖22 + ‖∇uy‖22dxdy =

∫
Ω

(
∂ux

∂x

)2

+

(
∂ux

∂y

)2

+

(
∂uy

∂x

)2

+

(
∂uy

∂y

)2

dxdy .

(20)
The discrete form directly coming from T is given by:

T̃ (u) =
1

2

∫
Ω

4∑
i=1

||Li (x , y)u||2dxdy =
1

2
uT

(∫
Ω

4∑
i=1

LTi (x , y)Li (x , y)dxdy

)
u =

1

2
uTLu,

(21)
where Li are �rst order partial di�erential operators. L is called the Tikhonov linear operator.
In order to properly select the DOF where the Tikhonov regularization will be applied, we will
eventually consider a slightly di�erent discrete cost function, based on the euclidean norm of
the action of the Tikhonov operator instead of the scalar product:

T̃ (u) =
1

2
||Lu||22. (22)
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