Large-scale embedded domain simulations by means of the AgFEM method

Francesc Verdugo

CIV-PRESTO, Toulouse, FR, 2020-09-23

BARCELONATECH

What are Embedded Finite Element methods?

Embedded Finite elements

CutFEM, Finite Cell Method, AgFEM, X-FEM, ...

body-fitted mesh unfitted mesh

 \checkmark Simplified mesh generation

Embedded Finite elements

CutFEM, Finite Cell Method, AgFEM, X-FEM, ...

- \checkmark Simplified mesh generation
- ✘ Dirichlet BC? ✘ Numerical integration? ✘ ill-conditioning? (this talk)

3D printing simulation

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 690725

UQ with stochastic geometries

Distributed simulation pipeline

1. Unfitted (adaptive) Cartesian grids (p4est)

Distributed simulation pipeline

- 1. Unfitted (adaptive) Cartesian grids (p4est)
- 2. Partition using space filling-curves (p4est)

Distributed simulation pipeline

- 1. Unfitted (adaptive) Cartesian grids (p4est)
- 2. Partition using space filling-curves (p4est)
- 3. Embedded FEM (AgFEM)
- 4. AMG linear solver (petsc)

 \vee Highly scalable mesh generation based on octrees (e.g. p4est)

- \vee Highly scalable mesh generation based on octrees (e.g. p4est)
- \vee Highly scalable mesh partition with space-filling curves (Parmetis not needed)

- \vee Highly scalable mesh generation based on octrees (e.g. p4est)
- \vee Highly scalable mesh partition with space-filling curves (Parmetis not needed)
- \vee Highly scalable adaptive mesh refinement + load balancing

- \vee Highly scalable mesh generation based on octrees (e.g. p4est)
- \vee Highly scalable mesh partition with space-filling curves (Parmetis not needed)
- \vee Highly scalable adaptive mesh refinement + load balancing
- ✘ Not guaranteed that highly scalable linear solvers keep their optimal properties for cut elements.

Petsc CG + AMG preconditioner on unfitted meshes

Poisson equation (weak scaling test with 5 meshes)

 \bigoplus AMG+AgFEM \bigoplus AMG + Naive unfitted FEM*

* Nitsche BCs + modified integration in cut cells

Why linear solvers are affected by cut cells?

Condition number estimates (Poisson Eq.)

"small cut cell problem"

Possible remedy: Fix the linear solver ¹

¹[S. Badia, F. Verdugo. Robust and scalable domain decomposition solvers for unfitted finite element methods. *Journal of Computational and Applied Mathematics* (2018)] F. Verdugo (CIMNE) 12/49

Possible remedy: Enhanced FE formulation

Agenda

1. [The AgFEM method \(serial case\)](#page-20-0)

2. [Parallel implementation](#page-43-0)

3. [Performance of parallel AgFEM + AMG solvers](#page-58-0)

Agenda

1. [The AgFEM method \(serial case\)](#page-20-0)

2. [Parallel implementation](#page-43-0)

3. [Performance of parallel AgFEM + AMG solvers](#page-58-0)

AgFEM method for the Poisson Eq.

$$
-\Delta u = f \text{ in } \Omega
$$

 $u = u^D \text{ on } \partial\Omega$

г т ┯ ┬ ┱ ┬ ┑

Dirichlet BCs

Nitsche's Method

Find $u^h \in V^h$ such that

$$
a(v, u^h) = l(v) \quad \forall v \in V^h \ (V_h \ \text{does not vanish on } \partial \Omega)
$$

where

$$
a(v, u) := \int_{\Omega} \nabla v \cdot \nabla u - \int_{\partial \Omega} (v \nabla u) \cdot n
$$

$$
+ \int_{\partial \Omega} \beta v u - \int_{\partial \Omega} (u \nabla v) \cdot n
$$

$$
l(v) := \int_{\Omega} v f + \int_{\partial \Omega} \beta v u^D - \int_{\partial \Omega} (u^D \nabla v) \cdot n
$$

Starting point: "naive" FE space

$$
V_h^{\text{std}} := \{ u \in C^0(\Omega^{\text{act}}) \ : \ u|_K \in Q^p(K) \ \forall K \in \mathcal{T}^{\text{act}} \}
$$

 $\mathcal{T}^{\text{act}}, \ \Omega$ act V

std h

Starting point: "naive" FE space

$$
V_h^{\text{std}} := \{ u \in C^0(\Omega^{\text{act}}) \ : \ u|_K \in Q^p(K) \ \forall K \in \mathcal{T}^{\text{act}} \}
$$

 $\mathcal{T}^{\text{act}}, \ \Omega$ act V

std h

Aggregated FE space

Basic idea: improve conditioning by removing problematic DOFs

1. Generate cell aggregates (1 interior cell + several cut cells)

- 1. Generate cell aggregates (1 interior cell + several cut cells)
- 2. Define dof to root cell map $\text{root}(\times)$ via the aggregates

- 1. Generate cell aggregates (1 interior cell + several cut cells)
- 2. Define dof to root cell map $\text{root}(\times)$ via the aggregates
- 3. Define constraints:

$$
u_{\mathbf{X}} = \sum_{\bullet \in \operatorname{dofs}(\operatorname{root}(\mathbf{X}))} \phi^{\operatorname{root}(\mathbf{X})}_{\bullet}(x_{\mathbf{X}}) u_{\bullet}
$$

Results for the unfitted aggregated FEM (Poisson Eq.)²

 $\kappa({\bf A}) \leq c_1 h^{-2}$ (Condition number bound) $\beta \leq c_2 h^{-2}$ (Nitsche's penalty coef.) $||u - u_h||_{H^1(\Omega)} \le c_3 h^p$ (Optimal convergence order) $||u - u_h||_{L^2(\Omega)} \leq c_4 h^{p+1}$ (Optimal convergence order)

and others (inverse/trace inequalities, bound of aggregate size, bound of the extended solution, ...)

² [Badia, Verdugo, Martín. The aggregated unfitted finite element method for elliptic problems. Comput. Methods Appl. Mech. Eng. (2018).]

Convergence test

F. Verdugo (CIMNE) 24/49

Extension to the Stokes problem³

$$
\begin{aligned}\n-\Delta u + \nabla p &= f \quad \text{in } \Omega \\
\nabla \cdot u &= 0 \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \Gamma_{\text{D}} \\
(\nabla u - pI) \cdot n &= g \quad \text{on } \Gamma_{\text{N}}\n\end{aligned}
$$

³[Badia, Martín, Verdugo. Mixed aggregated finite element methods for the unfitted discretization of the stokes problem. SIAM J. Sci. Comput., 40(6). 2018.]

F. Verdugo (CIMNE) 28/49

Extension to non-conforming meshes ⁴

⁴[S. Badia, A.F. Martín, E. Neiva, and F. Verdugo. The aggregated unfitted finite element method on parallel tree-based adaptive meshes. Submitted 2020]

Combining AgFEM + hanging node constrains

Well-posed DOFs = Interior DOFs

↓ Cyclic constraints

• well-posed free • well-posed hanging \times ill-posed free \times ill-posed hanging

Combining AgFEM + hanging node constrains

Well-posed DOFs = DOFs with local support on interior cells

↓ Resolvable constraints

• well-posed free • well-posed hanging \times ill-posed free \times ill-posed hanging

Convergence (Poisson Eq.)

Condition number (Poisson Eq.)

Agenda

1. [The AgFEM method \(serial case\)](#page-20-0)

2. [Parallel implementation](#page-43-0)

3. [Performance of parallel AgFEM + AMG solvers](#page-58-0)

Domain decomposition setup

Main phases to be parallelized:

- Cell Aggregation
- Imposition of constraints

Aggregates in 3D

(a) Step 1.

Parallel imposition of constraints

✘ Standard layer of ghost cells not sufficient

$$
u_{\times} = \sum_{\bullet \in \text{dofs}(\text{root}(\times))} \phi^{\text{root}(\times)}_\bullet(x_{\times}) u_\bullet
$$

Parallel imposition of constraints

 \vee We import extra ghost cells if needed

$$
u_{\times} = \sum_{\bullet \in \text{dofs}(\text{root}(\times))} \phi^{\text{root}(\times)}_\bullet(x_{\times}) u_\bullet
$$

Agenda

1. [The AgFEM method \(serial case\)](#page-20-0)

2. [Parallel implementation](#page-43-0)

3. [Performance of parallel AgFEM + AMG solvers](#page-58-0)

Weak scaling test setup

- Poisson eq.
- AgFEM and "naive" unfitted FEM
- Linear solver: PCG from Petsc
- Preconditioner: smooth aggregation AMG from Petsc (GAMG)
- Up to 16K cores and 1000M background cells

Computed at Mare Nostrum 4

Weak scalability analysis of AgFEM

Algorithmic weak scalability linear solver

Weak scalability analysis of h-adaptive AgFEM

Weak scalability of main AgFEM phases

Algorithmic weak scalability linear solver

F. Verdugo (CIMNE) 47/49

Conclusions

- \vee Embedded FEM simplifies mesh generation and partitioning
- ✘ ... but can destroy the scalability of linear solvers
- \vee AgFEM allows
- \vee ... to recover the optimal scaling of linear solver
- \triangleright ... while keeping the optimal discretization order

For more details:

- S. Badia, A.F. Martín, E. Neiva, and F. Verdugo. The aggregated unfitted finite element method on parallel tree-based adaptive meshes. *Submitted*. 2020. ArXiv 2006.05373.
- F. Verdugo, A. F. Martin, and S. Badia. Distributed-memory parallelization of the aggregated unfitted finite element method. *Comput. Methods Appl. Mech. Eng.*, 357. 2019.
- S. Badia, A.F. Martín, F. Verdugo. Mixed aggregated finite element methods for the unfitted discretization of the stokes problem. *SIAM J. Sci. Comput.*, 40(6). 2018.
- S. Badia, F. Verdugo, A.F. Martín. The aggregated unfitted finite element method for elliptic problems. *Comput. Methods Appl. Mech. Eng.*, 336. 2018.