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Context

I In many engineering problems, we are dealing with the large-scale
nonlinear optimization problem :

min
x∈Rn

f(x)

subject to cE(x) = 0, cI(x) ≥ 0

where x are the variables, f(x) is the smooth objective function,
cE(x), cI(x) are the smooth functions for the equality and inequality
constraints.

I Good algorithms to solve this problem should possess :

I Accuracy : They should be able to identify a solution with precision,
without being overly sensitive to errors

I Robustness : They should perform well on a wide variety of problems in
their class, for all reasonable values of the starting point.

I Efficiency : They should not require excessive computer time or storage

I Beginning at x0, optimization algorithms generates a sequence of
iterates {xk}Nk=0 when it seems that a solution point has been
approximated with sufficient accuracy.
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Context

I One of the most effective methods for large-scale nonlinear constrained
optimization is the sequential quadratic programming (SQP) approach.

I In deciding how to move from one iterate xk to the next xk+1, the search
direction pk, SQP uses the local information and solves the quadratic
subproblem at the iterate (xk, λk) :

min
p∈Rn

1

2
pT∇2

xxL(xk, λk)p+∇f(xk)T p

subject to ∇cE(xk)T p+ cE(xk) = 0

∇cI(x)T p+ cI(x) ≥ 0

where L(x, λ) = f(x)−
∑

i∈E∪I λici is the Lagrangian function.

I The objective in this subproblem is an approximation to the change in
the Lagrangian function in moving from xk to xk + p while the
constraints are the linearizations of the constraints.
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Context

I We are dealing with a sequence of quadratic minimization problems :

min
p∈Rn

1

2
pTAkp+ bk

T p

where Ak consist of the curvature information and bk consists of the
gradient information at the current iteration.

I Once we solve this quadratic subproblem, we update the iterate :
xk+1 = xk + pk

I Minimization of quadratic problems is equivalent to the solution of the
linear systems :

Ak p = bk
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Context

I Solve in sequence

A1p = b1, A2p = b2, . . . , Akp = bk

with an iterative method.

I When iterative methods are used, preconditioning is necessary to attain
convergence in a reasonable amount of time !

I In this talk, we will focus on the designing efficient preconditioners based
on the information herited from the previous linear systems to accelerate
the convergence rate of the current system.
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Outline of the presentation

Preconditioning

Second level preconditioning

Application to variational data assimilation

Application to aerodynamic shape optimization

Conclusions
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Preconditioning

I The aim of preconditioning techniques is to transform a system Ap = b
into a new equivalent system

FAp = Fb

with a more favorable eigenvalues distribution of the matrix FA.

I To perform such a transformation, one uses a so-called preconditioning
matrix F .

I For symmetric and positive definite systems, the rate of convergence of
the method, for instance Conjugate Gradients, depends on the distribution
of the eigenvalues of A. The more clustered spectrum converges faster.

I For nonsymmetric problems, it is difficult to analyse the convergence only
with the eigenvalue spectrum. However, a clustered spectrum (away from
0) often results in rapid convergence, especially when the preconditioned
matrix is close to normal.
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Designing good preconditioners

Ideally, the preconditioner F must :

I approximate the inverse of A

I make FA have more eigenvalue clusters

I decrease the condition number of FA compare to that of A

I be cheap to construct and apply

I The preconditioned system should be easy to solve

⇒ The preconditioned iteration should converge rapidly, while ensuring that
each iteration is not too expensive
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Designing good preconditioners

I Depending on the properties of the system, (symmetry, positive
definiteness, sparsity, etc ..) there are several strategies to build good
preconditioners. For instance, incomplete Cholesky factorization, domain
decomposition techniques, diagonal scaling, sparse approximate inverses,
etc.

Review Articles :

I M. Benzi (2002), Preconditioning techniques for large linear systems : A
survey

I K. Chen (2005), Matrix preconditioning techniques and applications

I A. Wathen (2015), Preconditioning

⇒ We name these preconditioners as the first-level preconditioner.
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Second level preconditioning

I Let us assume that A is fixed along the sequence.

I Solve Ap = b1 :

F0Ap = F0b1

where F0 is the first-level preconditioner and extract information info1.

I Solve Ap = b2 using info1 to precondition :

F1(F0, info1)Ap = F1(F0, info1)b2

and extract information info2.

I Solve Ap = b3 using info2 (and possibly info1) to precondition

F2(F0, info1, info2)Ap = F2(F0, info1, info2)b3

and extract information info3.

I . . .

⇒ Fk is called the second-level preconditioner.
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Second level preconditioning
How to construct the preconditioner ?

I Approximate A−1 or its effect on a vector by using set of directions.

I Available information : q = Ap

I We can use the pairs (p, q) to approximate A−1

I Which vectors have a product with A ?

−→ for instance : descent directions from Conjugate Gradients
(qi = Api)
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Second level preconditioning
Limited memory preconditioners

I We will focus on the idea of warm-start preconditioning techniques for
second-level preconditioning [Morales and Nocedal, 1999], which is
generalized by [Gratton et al., 2011] under the name of Limited Memory
preconditioners (LMPs).

The idea :

I Let A and F0 be symmetric positive definite matrices of order n

I Let S be any n by ` matrix of rank `, with ` ≤ n and Y = AS

I Find an update to F0 : F = ∆F + F0 such that

min
∆F
‖∆F‖F

subject to F = FT and FY = S

I We combine the most recently observed information about the Hessian with the
existing knowledge in our current Hessian approximation.

Definition :

F =
[
In − S(STY )−1Y T

]
F0

[
In − Y (STY )−1ST

]
+ S(STY )−1ST

is called the LMP being an approximation to A−1.

I F0 ≡ first-level preconditioner, F ≡ second-level preconditioner
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Some properties of the LMP

I F is symmetric and positive definite.

I F = A−1 if S is of order n.

I At least ` eigenvalues are clustered at 1.

I The remaining part of the spectrum does not expand.

I It requires additional memory : we need to save the column vectors of the
S ∈ Rn×` and AS ∈ Rn×`.

I It is cheap to apply : one matrix-vector product by M and 8kn additional
flops.
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Data Assimilation Problem

A dynamical system is characterized by state variables, e.g.

I velocity components

I pressure

I density

I temperature

I gravitational potential

Goal : predict the state of the system at a future time from

I dynamical integration model

I observational data

Applications : climate, meteorology, oceanography, neutronics, finance, ...
−→ forecasting problems
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Data Assimilation Problem

I A dynamical integration model predicts the state of the system given
the state at an earlier time.
−→ integrating may lead to very large prediction errors
−→ (inexact physics, discretization errors, approximated parameters)

I Observational data are used to improve accuracy of the forecasts.

−→ but the data are inaccurate (measurement noise, under-sampling
−→ 107 observations (109 variables) processed every day : inverse big

data
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Problem Formulation

Solve a large-scale non-linear weighted least-squares problem :

min
x∈Rn

1

2
‖x− xb‖2B−1 +

1

2

N∑
j=0

∥∥Hj

(
Mj(x)

)
− yj

∥∥2
R−1

j

where

I x ≡ x(t0) is the control variable in Rn, n ∼ 106.

I Mj are model operators : x(tj) =Mj(x(t0))

I Hj are observation operators : yj ≈ Hj(x(tj))

I the obervations yj and the background xb are noisy

I B and Rj are error covariance matrices
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Problem solution

→ Solve a large-scale non-linear weighted least-squares problem

min
x∈Rn

f(x) =
1

2
||x− xb||2B−1 +

1

2

N∑
j=0

||Hj(M(tj , t0)(x))− yj ||2
R−1

j

→ Typically solved using a Gauss-Newton algorithm

I solve the linearized subproblem

min
p(k)∈Rn

1

2
‖p(k) − (xb − x(k))‖2

B−1 +
1

2

∥∥∥H(k)p(k) − d(k)
∥∥∥2

R−1

I update x(k+1) = x(k) + p(k)
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Problem solution

From optimality conditions, at Gauss-Newton iteration k we have :

(B−1 +HT
k R
−1Hk)︸ ︷︷ ︸

Ak

p = B−1(xb − x) +HT
k R
−1dk︸ ︷︷ ︸

bk

where Ak is a large, symmetric and positive definite matrix.

Solution :

I Solve in sequence

A1 p = b1, A2 p = b2, . . . , Ak p = bk, . . .

by a preconditioned Krylov method (Conjugate Gradients or Lanczos
method).

I Precondition the first linear system with B (first-level preconditioner).

I Use limited memory preconditioning for second-level preconditioning
(Morales and Nocedal 2000, Gratton, et al. 2011)

On the use of limited memory preconditioners – 23 September 2020 17/33



Problem solution

From optimality conditions, at Gauss-Newton iteration k we have :

(B−1 +HT
k R
−1Hk)︸ ︷︷ ︸

Ak

p = B−1(xb − x) +HT
k R
−1dk︸ ︷︷ ︸

bk

where Ak is a large, symmetric and positive definite matrix.

Solution :

I Solve in sequence

A1 p = b1, A2 p = b2, . . . , Ak p = bk, . . .

by a preconditioned Krylov method (Conjugate Gradients or Lanczos
method).

I Precondition the first linear system with B (first-level preconditioner).

I Use limited memory preconditioning for second-level preconditioning
(Morales and Nocedal 2000, Gratton, et al. 2011)

On the use of limited memory preconditioners – 23 September 2020 17/33



Second level preconditioning with LMPs

−→ There are three particular cases for F [Gratton et al., 2011] :

F =
[
In − S(STAS)−1STA

]
F0

[
In −AS(STAS)−1ST

]
+ S(STAS)−1ST

1. The quasi-Newton LMP :
−→ S is a column matrix consisting of the descent directions generated
by a CG or Lanczos method.
−→ It amounts to the preconditioner proposed
by [Morales and Nocedal, 1999].

2. The spectral LMP :
−→ S is a column matrix consisting of the eigenvectors of A .
−→ It amounts to the preconditioner proposed by [Fisher, 1998]). In
practise, eigenpairs are approximated with Ritz pairs.

3. The Ritz LMP :
−→ S is a column matrix consisting of the Ritz pairs.
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Numerical performance of LMPs on ocean DA

[Tshimanga et al., 2008]

I A realistic outer/inner loop configuration is considered :

I 3 outer loops of Gauss-Newton (linearization)

I 10 inner loops of conjugate gradient (on each of the 3 systems)

I The performance is measured by the value of the quadratic cost function

I The convergence of Ritz pairs is measured by the backward errors :

‖Azi − θizi‖
‖A‖‖zi‖

I An unpreconditioned conjugate gradient is run on the first system to
produce 10 vectors from which 2, 6 and 10 relevant ones are selected :

I Ritz-vectors are selected according to their convergence

I Descent directions are selected as the latest ones
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Numerical performance of LMPs on ocean DA
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I (Inexact) spectral-LMP is sensitive to the error on the approximation of the
exact eigenpairs by Ritz pairs

I The Ritz-LMP may perform better than the (inexact) spectral-LMP and the
quasi-Newton LMP

I The Ritz-LMP and the quasi-Newton LMP are analytically equivalent when they
are constructed with all available information from a CG-like method run on a
same matrix

[Tshimanga et al., 2008]
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Multidisciplinary design optimization (MDO)
of an aircraft engine pylon

Airbus aims to use the new generation engines in order to provide
significant improvement in terms of Specific Fuel Consumption, while
increasing the nominal range of the re-engined airplane.

I This type of new engine is characterized by
larger pylon (connection between nacelle and
wing) and nacelles, and leads to install the
engine closer to the wing.

I The fairing shape and stiffness design of the
pylon is multidisciplinary : has to tackle strong
geometrical layout constraints as well as
aero-elastic and aerodynamic interactions with
wing and nacelle.

I A multidisciplinary compromise drives the engine
positioning and the pylon shape design.
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Multidisciplinary design optimization (MDO)
of an aircraft engine pylon

The MDO project at IRT Saint Exupéry assess the impact of the engine
position variation on the global aircraft performances, such as the aircraft
operational cost, the Cash Operating Cost (COC) :

minxa,xs,z COC(xa, xs, z)

Aerodynamics
xa minimizes fa(xa, z)

subject to ga(xa, z) ≤ 0.

Structure
xs minimizes f s(xs, z)

subject to gs(xs, z) ≤ 0.

subject to subject to

(Upper level)

(Lower level)

. The MDO problem is formulated as a bilevel optimization problem.
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. Aerodynamics is optimized more slowly than Structure.

. As many as different alternative displacements z = (dX; dZ) are
envisaged, similar bound constrained Aerodynamics problems are solved.
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The aerodynamics optimization
as a bound-constrained nonlinear problem

I Aerodynamics is parameterized as a nonlinear problem with about 400
variables subject to bound-constraints [Guénot et al. 2018].

min
xa∈Rn

f(xa, z1), min
xa∈Rn

f(xa, z2), ... min
xa∈Rn

f(xa, zk)

s.t. ` � xa � u s.t. ` � xa � u ... s.t. ` � xa � u

I Sequence of bound constrained optimization problems

I One instance effectively solved by the L-BFGS-B algorithm

I Function evaluations for aero simulations are time consuming

I Assume that the curvature of f is only moderately sensitive to z

I Goal : solve Aerodynamics with fewer objective evaluations by using
second-level preconditioners.

I Idea : We seek to incorporate curvature information from an earlier
instance Aerodynamics(z′) into L-BFGS-B and solve instance
Aerodynamics(z)
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The L-BFGS-B algorithm
A quasi-Newton method

I L-BFGS-B is an optimization algorithm for differentiable functions subject
to bound-constraints (also called “box-constraints”) :

minimize f(x) subject to ` � x � u.

BFGS [Dennis and Moré, 1977] is an algorithm for unconstrained
optimization named after Broyden, Fletcher, Goldfarb and Shanno.

L-BFGS [Nocedal, 1980] is a variant of BFGS using limited memory.

L-BFGS-B [Byrd et al., 1995] extends L-BFGS to bound-constraints.

I L-BFGS-B is a quasi-Newton method : an alternative to Newton’s method
where the Hessian ∇2f(xk), which contains the curvature information of
f at the iterate xk, is approximated by a matrix Bk.

The objective is approximated by a quadratic mk near the iterate xk :

f(x) ≈ mk(x) = f(xk) +∇f(xk)>(x− xk) +
1

2
(x− xk)>Bk(x− xk).
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The L-BFGS-B algorithm
An iterative method

Step 1 : Find a descent direction

Find x̄k that approximately minimizes mk in Ω and set dk = x̄k − xk.

a. Guess the bounds active at x̄k :

Find the Generalized Cauchy Point
(GCP) that minimizes mk on the
projected steepest descent path
(Projection onto the feasible set).
Select the GCP’s active bounds.

b. Minimize mk on the active space.

Ω

?

•xk
−∇mk(xk)

•GCP

◦
x̄kdk

Step 2 : Minimize f in this direction (line search)
xk+1 = argmin{f(x) : ` � x � u with x = xk + λdk for some λ in R+}.
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a. Guess the bounds active at x̄k :
Find the Generalized Cauchy Point
(GCP) that minimizes mk on the
projected steepest descent path
(Projection onto the feasible set).
Select the GCP’s active bounds.

b. Minimize mk on the active space.

Ω

?

•xk
−∇mk(xk)•

GCP◦
x̄kdk

Step 2 : Minimize f in this direction (line search)
xk+1 = argmin{f(x) : ` � x � u with x = xk + λdk for some λ in R+}.
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Preconditioning of bound-constrained optimization
Making level lines more spherical

Before preconditioning.

Ω

?

•xk
−∇f(xk)

•GCP

◦
x̄kdk

After preconditioning.

Ω̃

?
•x̃k

−∇f̃(x̃k)

•GCP

◦
¯̃xkdk

Steepest descent −∇f(xk) is
orthogonal to the level lines of f .
It may not be directed at the
unconstrained minimizer of f .

Preconditioning is a change of
variable x̃ = L−1x that yields a new

objective function f̃(x̃)
def
= f(Lx̃)

with more spherical level lines.
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Preconditioning of bound-constrained optimization

I By preconditioning the minimization of f(x) in Ω = {x : ` � x � u}
we mean applying a change of variable

x̃ = L−1x

and minimizing

f̃(x̃)
def
= f(Lx̃)

in the polyhedron Ω̃
def
= L−1(Ω) = {x̃ : ` � Lx̃ � u}.

I For quasi-Newton type methods, preconditioning can be considered as
providing a better initial Hessian.

I We aim to get better oriented descent directions towards the minimum,
accordingly fewer evaluations of f .

I The price to pay is linear contraints : Projection onto bounds become
projection onto a polytope.
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How to choose the preconditioner ?
Limited memory preconditioners

I Consider an earlier instance Aerodynamics(z′), already solved.
During the minimization, secant pairs (si, yi) :

Bksi = yi

for i = 1, ..., ` are saved (accumulating curvature information) to
construct the inverse approximation to Bk.

I We propose to precondition upcoming instances Aerodynamics(z) with
the limited memory preconditioner B−1

k .

The change of variable L is obtained by splitting : B−1
k = LL>.
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Numerical Experiments
Implementational issues

The L-BFGS-B Fortran code [Zhu et al., 1997] is wrapped in the Python
library SciPy and ready to be used in GEMS (IRT’s software for MDO).

Implementation requirements

I A more flexible implementation of the L-BFGS-B algorithm was necessary
to enable preconditioning.

I This new code needed to be consistent with the Fortran reference.

L-BFGS-B as a GEMS optimization library

I L-BFGS-B is implemented in the Python language.

I This implementation is validated on CUTEr [Gould et al., 2003] test
problems and used for the Aerodynamics problem.

I For Aerodynamics, the cost of projection is negligible relative to the very
expensive evaluation cost. In analysing the results we focus on the number
of function evaluations.
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Numerical Experiments
Validation on the CUTEr

P-L-BFGS-B benchmarks (April 15, 2019)

Setting: BFGS preconditioner, not re-conditioned, split by recursive factorization, non-normalized design space.

maxcor = 10
PROBLEM n (P-)L-BFGS-B P-L-BFGS-B

nact nfg time nact nfg time nfg gain f - f prec

ALLINIT 4 1 17 0.06 1 15 0.08 +12% -6e-14

BIGGS5 6 1 63 0.28 1 36 0.17 +43% +6e-03

BQPGASIM 50 10 17 0.12 10 13 0.20 +24% -4e-10

HATFLDA 4 0 41 0.27 0 40 0.13 +2% -2e-10

HATFLDB 4 1 33 0.09 1 21 0.08 +36% -1e-12

HATFLDC 25 0 23 0.13 0 16 0.15 +30% +8e-12

HS110 10 0 8 0.08 0 8 0.04 +0% -3e-13

MAXLIKA 8 3 56 0.22 1 68 0.35 -21% +1e-02

PALMER1 4 0 36 0.16 0 31 0.15 +14% -5e-13

PALMER2 4 0 32 0.11 0 26 0.16 +19% -1e-13

PALMER3 4 1 12 0.06 1 9 0.03 +25% +2e-08

PALMER4 4 1 13 0.08 1 8 0.03 +38% -2e-08

PROBPENL 500 0 4 0.02 0 3 0.26 +25% -1e-18

PSPDOC 4 1 12 0.04 1 12 0.12 +0% +7e-11

S368 8 2 13 0.11 3 10 0.09 +23% +2e-01

MAX +43% +2e-01

MEAN +18% +1e-02

MIN -21% -2e-08

1

L-BFGS-B set up with a limited memory preconditioner yields significant
gain in terms of evaluation cost on average.
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Numerical Experiments
Validation on the CUTEr

P-L-BFGS-B benchmarks (July 4, 2019)

Setting: BFGS preconditioner, not re-conditioned, split by recursive factorization, non-normalized design space.

maxcor = 5
PROBLEM n (P-)L-BFGS-B P-L-BFGS-B

nact nfg time nact nfg time nfg gain f - f prec

BIGGS5 00 6 1 63 0.61 1 36 0.13 +43% +6e-03

BIGGS5 01 (9.13e-03) 6 1 62 0.24 1 28 0.10 +55% +6e-03

BIGGS5 02 (1.60e-02) 6 1 59 0.29 1 37 0.14 +37% +6e-03

BIGGS5 03 (2.45e-02) 6 1 62 0.20 1 37 0.20 +40% +6e-03

BIGGS5 04 (5.05e-02) 6 1 65 0.25 1 42 0.17 +35% +6e-03

BIGGS5 05 (5.29e-02) 6 1 57 0.20 1 42 0.15 +26% -7e-06

BIGGS5 06 (5.24e-02) 6 1 65 0.27 1 43 0.18 +34% -7e-06

BIGGS5 07 (9.16e-02) 6 1 99 0.36 1 43 0.18 +57% -2e-05

BIGGS5 08 (1.50e-02) 6 1 72 0.28 1 36 0.16 +50% +6e-03

BIGGS5 09 (3.38e-02) 6 1 59 0.22 1 42 0.17 +29% +6e-03

BIGGS5 10 (9.60e-02) 6 1 111 0.42 1 44 0.23 +60% -2e-05

BIGGS5 11 (6.55e-02) 6 1 64 0.28 1 46 0.23 +28% +6e-03

BIGGS5 12 (6.45e-02) 6 1 65 0.30 1 42 0.22 +35% +6e-03

MAX +60% +6e-03

MEAN +41% +4e-03

MIN +26% -2e-05

1
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Numerical Experiments
Preconditioning for aerodynamic shape optimization

I We use GEMS platform to perform a bi-level formulation based on
aero-structure optimization.

I Similar aerodynamic optimization problems are solved at each iteration of
the system optimization.

I P-L-BFGS-B algorithm allowed to a significant gain in computational
time. Similar cost function value reduction is obtained after 8 iterates of
P-LBFGS-B instead of 16 iterates L-BFGS-B. [Gallard, Gratton, Gürol,
Pauwels, Toint (2020)]
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Conclusions

I Preconditioning is a key issue and widely used method in the
computational efficiency of the iterative solvers.

I When solving a sequence of (slowly varying) linear systems or quadratic
subproblems, inherited information can be used to further accelerate the
convergence.

I LMPs are already operational in numerical weather forecast, and their
potential use for other areas such as ocean data assimilation is well-known.

I We have shown as well the performance of the LMPs for indefinite
systems arising in time-parallel formulation of the variational data
assimilation [Fisher et al., 2018].

I Recently, we show that there is a potential in accelerating the convergence
of the aerodynamic shape optimization by using the LMPs. In this case a
special attention needs be paid for the constraints.
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Thank you for your attention !
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Preconditioning

I Assume that a preconditioner F (= CCT ) is nonsingular inverse
approximation of the matrix A, the system Ax = b can then be
transformed by using :

1. left preconditioner :
F A x = F b

2. split preconditioner :

CT A C y = CT b, x = C y

3. right preconditioner
A F y = b, x = F y

I These systems have the same solution but may be easier to solve.

I The choice depends on the availability of the matrices, the choice of the
iterative method, problem characteristics, etc.

I When using Krylov subspace methods, F can be applied as an operator.
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