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Mathematical formulation of the DIC problem

The Digital Image Correlation [Bay et al, 1999] (DIC) problem is formalized as the
non-linear optimization problem, namely the grey level conservation law,

min
u∈L2(Ω)

φ(u) =

∫
Ω

[f (x)− g(x + u(x))]2dx . (1)

with Ω ⊂ R2 or R3 the domain of interest, f , g the greyscale image of respectively
the reference and the deformed specimen, and u ∈ L2(Ω) the unknown
displacement field.
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Solution of the grey level conservation equation

The non-linear optimization problem (1) is solved via a variant of the
Gauss-Newton method.

Then finite element discretization yields the following
linear system whose solution at the k−th step is the k−th increment,

Aδu(k) = b(k) with


Ai,j =

∫
Ω
NT

i ∇f (x)∇f (x)TNjdx

b
(k)
i =

∫
Ω
NT

i ∇f (f (x)− g(x + u(k)))dx

. (2)

The update of the displacement field is done via u(k+1) = u(k) + δu(k).

Hence the need to solve a sequence of linear systems involving a symmetric
positive definite A, of order #DOFs.
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Regularization of the problem

The problem (1) might need a regularization term to lower the measurement
uncertainty,

φtot(u) = φ(u) + α · φreg(u).

The subproblems (2) become,

(A + αR)︸ ︷︷ ︸
Â

δu(k) = (b(k) − αRu(0))︸ ︷︷ ︸
b̂(k)

.

Different regularizations (Tikhonov, elastic) yield different matrices R, and finding
the optimal value for α is not trivial.
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Method and features

Why using iterative methods rather than direct methods ?

– the system is of very large scale,

– the operator A is not stored as a matrix,

– the linear operator changes along the sequence.

Let A,M ∈ Rn×n be two s.p.d. linear operators, and b, x0 ∈ Rn. Let r0 = b − Ax0

denote the initial residual. The preconditioned conjugate gradient [Hestenes et al,
1952] yields after p iterations,

xp = x0 + arg min
y∈Kp

‖x? − y‖A ,

with x? = A−1b the exact solution, and Krylov subspace Kp,

Kp = span
{
Mr0, (MA)Mr0, . . . , (MA)p−1Mr0

}
.
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Efficient preconditioner

The design of an efficient preconditioner [Wathen, 2015] is complex and mostly
problem dependent. However, elementary algebraic preconditioners exist and can
be easily implemented and tested.

An efficient preconditioner must ideally,

– Be cheap to construct and to store,

– Be cheap to apply to a vector (M ≈ A−1) or solve for a vector (M ≈ A),

– Eventually be matrix-free,

– Allow parallelization.
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Algebraic Preconditioners

Let us present here algebraic preconditioners. Let A be split as A = L + D + LT

with D diagonal and L strictly lower triangular.

One have,

– M = D−1: Jacobi or diagonal preconditioner,

– M = (LT + D)−1D(L + D)−1: Symmetric Gauss-Seidel preconditioner,

– Algebraic Multigrid used as preconditioners [Trottenberg et al, 2001],

– Domain Decomposition preconditioners [Dolean et al, 2015],

– Projection-based preconditioners: Deflation [Frank et al, 2001].
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Deflation technique

Let S ⊂ Rn and S ∈ Rn×k such that S = span{S} be a block vector matrix and
let us consider,

πA(S) = S(STAS)−1STA.

The solution of Ax? = b can be written x? = S(STAS)−1Sb + x̃ with,

(In − πA(S))TAx̃ = (In − πA(S))Tb. (3)

The so-called deflated linear system is such that,

– The deflated operator is symmetric positive semi-definite and the system is
consistent,

– The operator null space is S,

– κ((In − πA(S))TA) ≤ κ(A).
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Investigated problems

Two different cases are studied here:

(a) High resolution mesh n ≈ 105. (b) Mesh with a hole n ≈ 104.

For both: Elastic regularization with α = 5 · 103
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Iteration count vs. Preconditioners

Algebraic Multigrid implementation, PyAMG: https://github.com/pyamg/pyamg
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FLOP count vs. Preconditioners
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Iteration count vs. Deflation strategy
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FLOP count vs. Deflation strategy
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Conclusions and perspectives

Conclusions,

– Algebraic preconditioners perform well, especially the algebraic multi-grid,

– Random deflation subspace is potentially interesting compared to standard
deterministic deflation strategies.

Perspectives,

– Interested in solving larger problems, with more complex meshes,

– Studying the performance of the preconditioners in this context,

– Combining preconditioning and deflation,

– Studying the interest of randomly generated deflation subspace.

Thank you for your attention.
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